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Chapter I

Introduction

I.1 Historical Introduction

The theory of symmetric spaces was initiated by E. Cartan in 1926. While he
was studying Riemannian locally symmetric spaces, he discovered, via the paper
by H. Weyl [Wey26], that the problem he was studying was equivalent to the one
he had studied some twelve years earlier, namely the classification of real forms of
complex semisimple Lie algebras.

The original definition of symmetric space belongs to the realm of Rieman-
nian geometry, in that a Riemannian symmetric space was originally defined as a
Riemannian manifold whose curvature tensor is invariant under parallel
translation. While the Riemannian geometrical acception has not faded, Cartan
discovered that symmetric spaces are as related to Riemannian geometry as they
are to Lie groups.

There are at least three good reasons to study symmetric spaces:

• They connect seemingly different fields of mathematics, and hence each one of
the fields can enhance the knowledge about the other. As Cartan put it: ”The
theory of groups and geometry, leaning on one another, allow one to take up
and solve a great variety of problems”, [Car26].

• Many well known examples are indeed symmetric spaces.

• They are beautiful!

Examples. (1) The Euclidean n-space E := (Rn, gEucl) is a symmetric space. Its
sectional curvature vanishes everywhere. Its isometry group is O(n)⋉Rn.

(2) The unit sphere Sn in Rn+1 equipped with the Riemannian metric induced by
Rn+1 is a symmetric space whose sectional curvature is everywhere equal to one.
Its isometry group is O(n,R).
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(3) Let q : Rn+1 → R be the quadratic form associated to the symmetric bilinear
form of signature (n, 1)

⟨x, y⟩ := x1y1 + · · ·+ xnyn − xn+1yn+1 .

Then

Hn
R := {x ∈ Rn+1 : q(x) = ⟨x, x⟩ = −1 and xn+1 > 0}

is the (real)1 hyperbolic n-space. To give it a metric, write for every x ∈ Hn
R

Rn+1 = Rx⊕ (Rx)⊥ where (Rx)⊥ :=
{
y ∈ Rn+1 : ⟨x, y⟩ = 0

}
.

Since ⟨x, x⟩ = −1, the restriction ⟨·, ·⟩|(Rx)⊥ is positive definite and hence defines
a Riemannian metric on Hn

R. Hn
R is a symmetric space whose sectional curvature

is identically equal to −1. Its isometry group is O(n, 1)+, where

O(n, 1) := {g ∈ GL(n+ 1,R) : q(gx) = q(x) for every x ∈ Rn+1}

and

O(n, 1)+ := {g ∈ O(n, 1) : gHn
R = Hn

R} .

In each of the above cases it is easy to see that the isometry group acts transitively
on the symmetric space.

I.2 Overview

I.2.1 Riemannian Geometrical Characterization of Symmet-
ric Spaces

1We could define also the complex and quaternionic hyperbolic space. Let K = R,C or H.
Recall that the quaternions H is a four dimensional algebra over R with basis {1, i, j, k}, where
1 is central, ij = k, jk = i, ki = j, and i2 = j2 = k2 = −1. Endow the space Kn+1 with the
K-Hermitian form q defined by

q(x, y) := x1y1 + · · ·+ xnyn − xn+1yn+1 ,

(where conjugation is of course trivial in R). If PKn is the projective space PKn = (Kn+1\{0})/K∗,
the set

Hn
K := {x ∈ PKn : q(x, x) < 0} .

is called real, complex or quaternionic hyperbolic n-spaceHn
K, according to whetherK = R,C

or H. Its dimension is, accordingly, n, 2n or 4n.
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Convention. A manifold is always assumed to be connected, second countable,
paracompact, Hausdorff and finite dimensional. The only exception are Lie groups,
that are allowed to have several components.

IfM is a Riemannian manifold and p ∈M , a geodesic symmetry at p is a map
defined in a neighborhood of p that fixes p and reverses any local geodesic through
p.

Remark. A geodesic symmetry need not be an isometry and need not be defined
on the whole of M .

Definition: Riemannian Symmetric Space

The Riemannian manifoldM isRiemannian locally symmetric if for every
p ∈ M , there exists a geodesic symmetry sp that additionally is an isometry
on its domain.
A Riemannian manifold is a Riemannian glolbally symmetric space if it
is locally Riemannian symmetric and in addition for every p ∈M the geodesic
symmetry sp is defined on the whole of M .

Example. (1) As an exercise define the geodesic symmetry in the case of Sn and
of Euclidean n-space.

(2) Let Hn
K be hyperbolic n-space. We can identify2 the tangent space TxHn

K at the
point x ∈ Hn

K with x⊥ := {y ∈ Kn+1 : q(x, y) = 0}. The Hermitian form q has
signature (n, 1) and Kn+1 = (Kx) ⊕ (Kx)⊥, so that the restriction of q to x⊥

is positive definite. It follows that Re q(u, v) descends to an inner product on
TxHn

K that turns Hn
K into a Riemannian manifold.

If for example K = R, then geodesics in this model are the intersection of the
hyperboloid with planes through the origin. The geodesic symmetry is defined
at x by

sx(y) := −2xq(x, y)− y .

In fact, we will show that a geodesic symmetry is characterized by sx ∈ O(q,K),
(sx)

2 = Id , sx(x) = x and sx preserves the Riemannian metric: namely, if
z ∈ Hn

K, then dzsx : TzHn
K → Tsx(z)Hn

K has the property that

q(dzsx(v), dzsx(v)) = q(sx(v), sx(v)) = q(v, v) ,

2Consider the map F (x) := q(x, x) + 1. If x ∈ F−1(0), then ker dxF = Tx(F
−1(0)), and

(dxF )(y) = d
dt |t=0F (x+ ty) = 2q(x, y).
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where we have used that the differential of a linear map is the linear map itself.
If follows also that, if v is a tangent vector at x, then

sx(v) = 2vq(x, v)− v = −v .

We will see that if M is Riemannian globally symmetric, then it is complete
and the connected component of its isometry group is small enough to be finite
dimensional, but large enough to act transitively. The stabilizer of a point is going
to be a compact subgroup of Iso(M)◦.

We next list a few more (and less well known) examples:

Example. (1) A compact semisimple Lie group can be turned into a Riemannian
symmetric space.

(2) Any compact orientable Riemann surface of genus g ≥ 2 is locally Riemannian
symmetric but not Riemannian symmetric. They are all quotients H2

R/Γ, where
Γ < Iso(H2

R)
◦ is a discrete cocompact subgroup (isomorphic to the fundamental

group of the surface).

(3) Quotients of 2-dimensional real hyperbolic space by SL(2,Z) or by any finite
index subgroup are locally Riemannian symmetric with finite volume but not
compact).

(4) Borel showed that any Riemannian symmetric space, whose isometry group
is semisimple, admits a quotient that is of finite volume and compact (using
number theoretical arguments).

In fact, developing the theory leads to the first fact that any symmetric space is
of the form Rm × G/K, where Rm is a Euclidean space and G is a semisimple Lie
group that has an involutive automorphism σ whose fixed point is essentially K (in
fact, (Gσ)◦ ≤ K ≤ Gσ).

It is clear from the above examples that the theory of Riemannian locally sym-
metric spaces is part of the realm of discrete subgroups of semisimple Lie groups.
We will soon leave aside the Riemannian locally symmetric spaces and concentrate
on the Riemannian globally symmetric ones.

I.2.2 Algebraic Characterization of Symmetric Spaces

A symmetric space can be characterized from a purely algebraic point of view as
follows. Take a connected Lie group and σ : G → G an involutive automorphism
σ2 = Id . A symmetric space for G is a homogeneous space G/H such that
H < Gσ is an open subgroup (hence union of connected components). If the group
Gσ of σ-fixed points is compact, then Gσ can be equipped with a Riemannian metric
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by considering any Gσ-invariant inner product on the tangent space at eGσ (which
is possible since Gσ is compact) and smearing it around using the G-action. If
(Gσ)◦ ≤ K ≤ Gσ, then G/K is a Riemannian symmetric space.

Remark. Differentiation of σ gives a decomposition of g into g = h ⊕ m, where
h = Lie(H) is the eigenspace with eigenvalue +1 and m is the eigenspace with
eigenvalue −1. Then [h, h] = h, [h,m] ⊂ m and [m,m] ⊂ h. These three conditions
indeed are equivalent in turn to the existence of an involutive automorphism of G
with h as a +1 eigenspace and m as a −1 eigenspace.

I.2.3 Equivalence between the two Characterizations

If M is Riemannian symmetric, then M ∼= G/K, where G = Iso(M)◦ and K =
StabG(p), where p ∈M is any point. Then K is compact and σ : G→ G, defined by
σ(g) = spgsp is an involutive automorphism of G such that (Gσ)◦ ⊂ K ⊂ Gσ (and
is hence open).

To see the converse, that is that M = G/K is Riemannian symmetric, we need
to define sp : M → M , where p = hK ∈ M . For l ∈ G we set sp(lK) = hσ(h−1l)K,
where σ is the involution ofG fixingK. One can then see that sp(p) = p, sp ∈ Iso(M)
and dpsp : TpM → TpM is just dpsp = −Id .

I.2.4 Decomposition, Classification and More to Follow

In 1926 Cartan classified all simply connected Riemannian symmetric spaces. Using
the de Rham decomposition, one can see that any simply connected Riemannian
symmetric space can be written as a product of M0 ×M+ ×M−, where

– M0 has zero curvature and is hence isometric to Rn;

– M+ has non-negative sectional curvature;

– M− has non-positive sectional curvature.

The simply connected symmetric spaces of non-negative curvature are those of
compact type, while the M− are of non-compact type. Both have semisimple
isometry group. The compact and non-compact symmetric spaces are moreover dual
one of the other (resembling the analogy between spherical geometry and hyperbolic
geometry, that can be, in fact, explained by this duality).

An important invariant of a symmetric space is its rank. This can be explained
from a Riemannian geometrical point of view as the maximal dimension of any
totally geodesic subspace of M (that is the maximal dimension of a subspace of the
tangent space to any point in which the curvature is zero). From the Lie theoretical
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point of view the rank is given in terms of the dimension of a Cartan subalgebra,
that is a maximal Abelian subalgebra that is diagonalizable.

If the rank is one, the maximal flats are geodesics. Thus the curvature is either
negative or positive, and we have as examples the hyperbolic spaces defined before
(in negative curvature) and the sphere (in positive curvature).

Here we will focus mostly on symmetric spaces of non-compact type. In this
case K < G is a maximal compact subgroup (and all maximal compact are conju-
gate). We will also see various decompositions such as the Cartan and the Iwasawa
decomposition. Finally we will study the geometry at infinity of a symmetric space.

I.2.5 (Maximal) Prerequisites in Riemannian Geometry

• Parallel transport, geodesic and the exponential map;

• Isometries of a Riemannian manifold as a metric space;

• de Rham decomposition;

• Levi-Civita connection;

• Curvatures (Riemann curvature tensor, sectional curvature);

• Jacobi fields.

I.2.6 Textbooks

(1) A. Borel, [Bor98]

(2) M. Bridson and A. Haefliger, [BH99]

(3) M. do Carmo, [dC92]

(4) P. Eberlein, [Ebe96]

(5) S. Helgason, [Hel01]

(6) S. Kobayashi and K. Nomizu, [KN96]



Chapter II

Generalities on Riemannian
Globally Symmetric Spaces

II.1 Isometries and the Isometry Group

A Riemannian metric g on a smooth manifold M is a map that associates to every
x ∈ M a scalar product on TxM such that for every coordinate chart φ : U → Rn

the function

U −→ R
x 7→ gx

(
(dxφ)

−1(ei), (dxφ)
−1(ej)

)
1 ≤ i, j ≤ n

is smooth, where ej denotes the j-th vector of the standard basis of Rn.

The length l(c) of a smooth path1 c : [a, b] →M is defined as

l(c) :=

∫ b

a

√
gc(t)(ċ(t), ċ(t))dt

where ċ(t) is the tangent vector to the path c at the point c(t).

If M is connected,

d(x, y) := inf {l(c) : c a smooth path from a to b}

defines the Riemannian distance between two points x and y.

A geodesic between two points is a smooth path that is length minimizing.

1By a smooth map c : I → M from an interval I ⊂ R into a smooth manifold we mean the
restriction of a smooth map defined on an open interval containing I.

9
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Definition: Isometry

An isometry between two Riemannian manifolds (M, g), (N, h) is a diffeo-
morphism f : M → N such that g = f ∗h, that is, if dpf : TpM → Tf(p)N is
the differential, then

hf(p)(dpf(u), dpf(v)) = gp(u, v) ,

for all u, v ∈ TpM .

It is easy to see that a Riemannian isometry maps geodesics to geodesics and
hence preserves the Riemannian distance. But actually the converse also holds:

Theorem II.1: [Hel01, Theorem I.11.1]

Let M be a Riemannian manifold and φ : M → M a diffeomorphism. Then
the following are equivalent:

(i) φ is a Riemannian isometry,

(ii) φ preserves the Riemannian distance.

The following is an extremely useful rigidity result for connected Riemannian
manifolds. Its states that Riemannian isometries are completely determined by the
local data at one point.

Lemma II.2: [Hel01, Lemma I.11.2]

Let fi : M → N , i = 1, 2, be two isometries between Riemannian manifolds
and assume that M is connected. Suppose there exists a point p ∈ M such
that

f1(p) = f2(p) and dpf1 = dpf2.

Then f1 = f2.

We start the proof by recalling few facts that will be useful also in the following.
The Riemannian exponential map Expp at a point p ∈ M is defined from a neigh-
borhood U0 of 0 ∈ TpM to a neighborhood of p in M as follows. Let Xp ∈ TpM ,
and let γXp be the unique geodesic γXp : (−ϵ, ϵ) →M , such that

γXp(0) = p and γ̇Xp(0) = Xp .

Then

Expp(Xp) := γXp(1) .



II.1. ISOMETRIES AND THE ISOMETRY GROUP 11

An open neighborhood of p that is the diffeomorphic image of a star shaped neigh-
borhood of 0 ∈ TpM under Expp is called a normal neighborhood

If f : M → M is an isometry and 0 ∈ N0 ⊂ TpM (resp. 0 ∈ N ′
0 ⊂ Tf(p)M) is a

neighborhood where Expp (resp. Expf(p)) is defined, then the diagram

N0

Expp
��

dpf // N ′
0

Expf(p)
��

M
f //M

commutes.

Proof of Lemma II.2 . By hypothesis f := f−1
2 ◦ f1 : M → M is an isometry that

satisfies
f(p) = p and dpf = Id .

so that the set
S := {q ∈M : f(q) = q, dqf = Id}

is closed and non-empty as p ∈ S. We show that S is open.
Let q ∈ S and U = Expq(N0) a normal neigborhood of q. Then for all v ∈ TqM

and t ∈ R with tv ∈ N0 we have

f(Expq(tv)) = Expf(q)(tdqf(v))

= Expq(tdqf(v))

= Expq(tv)

which shows that f |U = Id . Thus U ⊂ S and hence S is open. As S is a closed and
open non-empty set of the connected set M it is equal to all of M . ■

The isometries of a Riemannian manifold (M, g) form a group under composition,
denoted Iso(M), that can be endowed with the compact-open topology, i.e. the
topology generated by the subbasis

S(C,U) := {f ∈ Iso(M) : f(C) ⊂ U}

where C ⊂M is compact and U ⊂M is open.

Theorem II.3: [Hel01, Theorem IV.2.5]

LetM be a Riemannian manifold. Then Iso(M) with the compact-open topol-
ogy is a locally compact group acting continuously on M .
Moreover, the stabiliser StabIso(M)(p) of a point p ∈M is compact.
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Idea of proof. The proof relies upon the following two facts:

1. If M is a metric space, then the compact-open topology on Iso(M) coincides
with the topology of uniform convergence on compact sets.

2. If (fn)n≥1 ⊂M is a sequence such that for some p ∈M the sequence (fn(p))n≥1

converges, then there is f ∈ Iso(M) and a subsequence that converges to f in
the compact-open topology.

To see the compactness of the stabiliser, we consider the map

StabIso(M)(p) → O(TpM)

f 7→ dpf.

Then Lemma II.2 implies that if dpf = Id , then f = Id . ■

II.2 Geodesic Symmetries

Definition: Riemannian Symmetric Spaces

Let M be a Riemannian manifold.

• M is Riemannian locally symmetric if for each p ∈ M there exists
a normal neighborhood U of p and an isometry sp : U → U such that

(1) (sp)
2 = Id

(2) p is an isolated fixed point, i.e. p is the only fixed point of sp in U .

The map sp : U → U is called a geodesic symmetry.

• M is Riemannian globally symmetric if for each p ∈ M , sp can be
extended to an isometry defined on M .

Here is the relation between Riemannian locally symmetric and Riemannian
symmetric spaces:

Theorem II.4: [Hel01, Theorem IV.5.6]

A complete simply connected Riemannian locally symmetric space is Rieman-
nian globally symmetric.
In particular, the universal coveringof a complete locally symmetric space is
globally symmetric and every complete locally symmetric space is a quotient
of a complete globally symmetric space by a discrete torsion-free group of
isometries isomorphic to the fundamental group.
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Remark. The converse of Theorem II.4 does not hold, as for example S1 is a
Riemannian globally symmetric space that is Riemannian locally symmetric by def-
inition but not simply connected.

We will only be concerned with Riemannian globally symmetric spaces,
so the terminology “Riemannian symmetric space” or short RSS is from
now on intended to mean “Riemannian globally symmetric space”.

The following lemma relates the definition of geodesic symmetry at the begin-
ningof this section with the intuitive one mentioned in the previous one.

Lemma II.5

Let M be a Riemannian manifold and p ∈ U ⊂ M where U = Exp(N0) is a
normal neighborhood of p. Let sp ∈ Iso(M) be an isometry such that p is the
only fixed point. Then the following are equivalent:

(i) (sp)
2 = Id

(ii) dpsp = −Id .

In either case, it holds that

sp(Expp(tv)) = Expp(−tv)

wherever Exp is defined.

Proof. (ii) =⇒ (i): By the chain rule it follows from dpsp = −Id that

(dpsp)
2 = dp(sp)

2 = (−Id)2 = Id = dpId .

Since s2p(p) = p = Id(p) the claim follows from Lemma II.2.
(i) =⇒ (ii): From s2p = Id we get (dpsp)

2 = Id , where (dpsp)
2 : Tp(M) → Tp(M).

Hence dpsp has eigenvalues 2 +1 or −1. If +1 were to be an eigenvalue, then there
would be 0 ̸= v ∈ TpM such that (dpsp)v = v. Thus, for every tv ∈ N0 we would
have that

sp(Exp(tv)) = Exp(dpsp(tv))

= Exp(tv)

Hence Exp(tv) would be a fixed point for every t such that tv ∈ N0, contradicting
the fact that p is the only fixed point of sp. ■

2Let V be a real vector space. Then any map A ∈ End(V ) such that A2 = Id is diagonalizable.
In fact, if (·, ·) is any inner product, then A is in the orthogonal group of the inner product
< u, v >:= (u, v) + (Au,Av) and hence is diagonalizable.
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The following corollary follows immediately from Lemma II.5 and Lemma II.2:

Corollary II.6

If M is a connected Riemannian manifold and p ∈ M , then there is at most
one involutive isometry sp with p as isolated fixed point.

Proposition II.7

If M is a Riemannian symmetric space, then it is complete. Moreover, the
connected component Iso(M)◦ of the isometry group Iso(M) acts transitively
on M .

The completeness in Proposition II.7 is both as metric space and geodesically.
This follows from the following classical theorem:

Theorem II.8: Hopf–Rinow

Let M be a connected Riemannian manifold. Then the following are equiva-
lent:

(i) Closed and bounded sets are compact,

(ii) M is a complete metric space,

(iii) M is geodesically complete, that is, for all p ∈ M the exponential map
is defined on the whole tangent space.

As a consequence of any of the above, for all p, q ∈M there exists a geodesic
connecting p and q.

The proof of Proposition II.7 relies on the following lemma, whose proof we
postpone.

Lemma II.9

LetM be a Riemannian symmetric space. Then the mapM → Iso(M) defined
by p 7→ sp is continuous.

Remark. If M is a Riemannian symmetric space, o ∈M a basepoint and

K := StabIso(M)(o),
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then the orbit map

Iso(M)⧸K →M

gK 7→ g(o)

is a homeomorphism.

Proof of Lemma II.9: We verify that

sg(p) = gspg
−1, (II.1)

and, again by Lemma II.2 it is sufficient to check that the maps above and their
differentials agree at some point:

gspg
−1(g(p)) = gsp(p)

= g(p)

= sg(p)(g(p))

and

dg(p)(gspg
−1) = (dpg)(dpsp)(dg(p)g

−1)

= −(dpg)(dg(p)g
−1)

= −dg(p)Id

= −Id

= dg(p)sg(p).

Let p ∈ M and let g ∈ Iso(M) be such that g(o) = p. Consider then the following
diagram

Iso(M)⧸K
gK 7→g(o) //M

g(o) 7→sg(o) // Iso(M)

Iso(M)

g 7→gK

OO

g 7→gsog−1

66

where:

(1) The first arrow in the top line Iso(M)⧸K → M is the orbit map gK 7→ g(o),
which is a homeomorphism.
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(2) The diagonal arrow Iso(M) → Iso(M) defined as g 7→ gsog
−1 = sg(o) is con-

tinuous because of (II.2) and since Iso(M) is a topological group. Moreover it
factors through K, since K = StabIso(M)(o), thus giving a continuous map

Iso(M)⧸K

��

Iso(M)

Iso(M)

g 7→gsog−1

66
(II.2)

The composition of the inverse of the orbit map with the map in (II.2) realizes
M → Iso(M), g(o) 7→ sg(o) as composition of continuous maps.

■

Proof of Proposition II.7: Let a < b and γ : (a, b) →M a geodesic segment. We will
show that γ can be extended to (a, b+ 2ε) where ε := b−a

4
.

a a+ ϵ a+ 2ϵ b− ϵ b b+ 2ϵ

This will show that γ can be extended to R and hence M is geodesically complete
and, by Theorem II.8, also metrically complete.

Let p := γ(b− ε) and consider the geodesic segment

η : (a+ 2ε, b+ 2ε) −→ M

t 7→ sp (γ (a+ b+ 2ε− t)) .

γ
p = γ(b− ε)

v = γ̇(b− ε)

sp ◦ γ

(dpsp)(v)

Note that this makes sense, because t ∈ (a+ 2ε, b+ 2ε) implies that

a = a+ b+ 2ε− (b+ 2ε) < a+ b+ 2ε− t < a+ b+ 2ε− (a+ 2ε) = b .

To see that η extends γ as geodesica, we need to check that

(1) η(b− ϵ) = γ(b− ϵ), and

(2) η̇(b− ϵ) = γ̇(b− ϵ) .
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In fact,
η(b− ε) = η(a+ 3ε) = sp (γ(b− ε)) = γ(b− ε)

since sp fixes p. Also, by the chain rule,

η̇ (b− ε) = η̇ (a+ 3ε)

=
d

dt

∣∣∣∣
t=0

η (a+ 3ε+ t)

=
d

dt

∣∣∣∣
t=0

sp (γ (a+ b+ 2ϵ− (a+ 3ϵ+ t)))

=
d

dt

∣∣∣∣
t=0

sp (γ (b− ε− t))

= (dpsp) (−γ̇ (b− ε))

= γ̇ (b− ε)

which implies by the uniqueness of geodesics that

η|(b−2ε,b) = γ|(b−2ε,b) .

This means that we can prolong γ to (a, b+ 2ε) using η.
Let p, q ∈M and γ : [0, t] →M with γ(0) = p, γ(t) = q. Then

q = sγ(t/2)(p) ,

which shows that Iso(M) acts transitively on M . We want however to show that
Iso(M)◦ acts transitively. Since we showed in Lemma II.9 that the map p 7→ sp
is continuous and we know that M is connected, the image of M is contained in
a connected component, although there is no guarantee that it is the connected
component of the identity. We consider then the map

M ×M → Iso(M)

(p, q) 7→ sp ◦ sq

which is continuous and whose image contains s2p = Id . It follows then that the
image of this map is contained in Iso(M)◦. If γ is a geodesic from p to q with
γ(0) = p and γ(t) = q, then

sγ(t/2) ◦ sp(p) = q . ■

Corollary II.10

Let (M, g) be a Riemannian symmetric space, p ∈M and K = StabIso(M)(p).
Then K meets every connected component of Iso(M).
In particular, Iso(M)◦ is open and of finite index in Iso(M).
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Proof. Take g ∈ Iso(M). Since Iso(M)◦ acts transitively, there is g0 ∈ Iso(M)◦ such
that g0p = gp. But that means that there is an element k ∈ K such that g = g0k.
Thus k ∈ g Iso(M)◦ and K meets every connected component.

To see the second assertion, we note that Id ∈ K◦. Thus K◦ ≤ Iso(M)◦ and the
homomorphism

α : K → Iso(M)⧸Iso(M)◦

factors through K◦:
K⧸K◦ → Iso(M)⧸Iso(M)◦ .

By the first assertion this is surjective and hence∣∣∣K⧸K◦
∣∣∣ <∞ =⇒

∣∣∣Iso(M)⧸Iso(M)◦
∣∣∣ <∞ ■

A classical theorem of Myers and Steenrod [MS39] asserts that the isometry
group of a Riemannian manifold is a Lie group. The idea is to consider orbits of
points and parametrise in this way Iso(M). We sketch here the proof in the special
case of our interest: namely, knowing that a RSS is a homogeneous space G/K we
consider the principal G-bundle G ↠ G/K and we induce the Lie group structure
as a local product, using that K ↪→ O(n,R) is a Lie group.

Theorem II.11: [Hel01, Lemma IV.3.2, Theorem 3.3 (i)]

Let M be a Riemannian symmetric space. Then G := Iso(M) has a Lie group
structure compatible with the compact-open topology and it acts smoothly
on M .
Moreover, if o ∈ M is a base point, then M is diffeomorphic to G/K, where
K = StabG(o) and contains no non-trivial normal subgroups of G.

Sketch of the proof. The map K → O(ToM, g), defined by k 7→ dok, is a homeo-
morphism onto its image. Hence K can be identified with a closed subgroup of
O(ToM, g), from which it inherits a unique differentiable structure compatible with
the topology, which makes it a Lie group.

Let π : G↠M = G/K be the natural projection, π(g) := g(o). We will construct
a continuous local section of π, that is a map φ : U → G, where U is a normal
neighborhood of p in M , such that π ◦ φ = Id . From this it will follow that φ is a
homeomorphism onto its image B := φ(U) (it is clearly injective and its continuous
inverse is π|B). Thus we can define

φ̃ : U ×K → π−1(U)

(x, k) 7→ φ(x)k
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that is continuous and bijective with inverse map given by

φ̃−1 : π−1(U) → U ×K

g 7→ (g(p), φ(g(p))p).

Thus φ̃−1 is a homeomorphism between π−1(U) ∋ Id and U × K. The smooth
structure on G is then given by the smooth structure on translates of π−1(U). The
differentiable structure will hence be given to G by using translates of open set BU ,
where U ⊂ K is open and one can check that all the needed properties hold.

In order to construct the section φ, let γ(t) be a geodesic in U such that γ(0) = p.
As seen already in the proof of Proposition II.7, for every t, the isometry sγ(t/2) ◦ sp
maps p into γ(t), that is

sγ(t/2) ◦ sp(p) = γ(t).

Define then φ(γ(t)) := sγ(t/2) ◦ so. The map φ has the desired properties, since it is
obviously injective for small enough t and continuous (Lemma II.9).

If K were to contain a subgroup that is normal in G, then this subgroup would
act trivially on M = G/K, which is impossible. ■

II.3 Concepts of Riemannian Geometry

Definition: Vector fields

LetM be a smooth manifold, π : TM →M be the tangent bundle. A smooth
vector field is a section of π, that is a map X : M → TM such that π ◦X =
IdM .

We denote by Vect(M) the set of vector fields, which is a C∞(M)-module with
pointwise multiplication

(fX)p = f(p)Xp for f ∈ C∞(M), X ∈ Vect(M).

If f ∈ C∞(M,M), we denote by dpf : TpM → Tf(p)M its differential. Then any
X ∈ Vect(M) acts on C∞(M,M) by

(Xf)(p) = (dpf)(Xp)

At a point m ∈ M , this amounts to taking the derivative of f in the direction of
Xp.

While functions can be differentiated on a manifold, we need a canonical way of
identifying tangent spaces at different points if we want to differentiate vector fields.
This is exactly what is achieved with a connection.
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Definition: Connection

An affine connection on M is a map

∇ : Vect(M)× Vect(M) → Vect(M)

such that for all X,X ′, Y, Y ′ ∈ Vect(M), for all f, f ′ ∈ C∞(M) and for all
a, b ∈ R,

(1) ∇ is C∞(M)-linear in the first variable, that is

∇fX+f ′X′(Y ) = f∇XY + f ′∇XY

(2) ∇ is R-linear in the second variable, that is

∇X(aY + bY ′) = a∇XY + b∇XY
′

(3) ∇ satisfies the Leibniz-rule, that is

∇X(fY + f ′Y ′) = f∇XY + f ′∇XY
′ + (Xf)Y + (Xf ′)Y ′ .

Remark. The connection ∇XY (p) amounts to taking the derivative at p ∈M of Y
in the direction of Xp. In fact, the value at the point p ∈ M of ∇XY depends only
on the value Xp of the vector field X at p, but on the other hand on the vector field
Y in a neighborhood of p.

Definition: Covariant Derivative

Let γ : I →M be a smooth curve. A vector field along γ is a smooth map
X : I → TM such that X(t) ∈ Tγ(t)M . The covariant derivative of a vector
field X along γ is ∇γ̇(t)X.

We write Vect(γ∗TM) for the vector space of vector fields along γ. Note that a
vector field along γ is only a vector field whose basepoint is on γ, but not necessarily
tangent to γ.

Definition: Parallel Vector Fields

Let X ∈ Vect(γ∗TM) be a vector field along a smooth curve γ. We say that
X is parallel if ∇γ̇X = 0.

Remark. Take γ ⊂ Rn and X ∈ Vect(γ∗TM). We can decompose

TRn = Rγ̇ ⊕ (Rγ̇)⊥
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Then it holds that

∇γ̇X = pr(Rγ̇)⊥

(
dX

dt

)
The same applies to the tangent vector along a great circle in Sn−1 ⊂ Rn parametrised
by arclength. In fact, geodesics can be defined as curves γ such that

∇γ̇ γ̇ = 0.

■

In general it is extremely rare to find “constant” vector fields, that is vector fields
Y ∈ Vect(M) such that

(∇XY )p = 0 . (II.3)

for any p ∈ M and all X ∈ Vect(M). This is because the equation (II.3) is an
overdetermined partial differential equation. On the other hand the existence and
uniqueness of the solutions of differential equations imply the following:

Proposition II.12

Let M be a differential manifold and γ ∈ M a smooth curve. Given v ∈
Tγ(0)M , there is a unique vector field Xv ∈ Vect(γ∗TM) parallel along γ and
such that Xv

γ(0) = v.

Definition: Parallel Transport

We can then define the parallel transport along a curve γ from γ(0) to
γ(t) as

Pγ,[0,t] : Tγ(0)M → Tγ(t)M

v 7→ Xv
γ(t)

Because of uniqueness,

Pγ,[t1,t2] ◦ Pγ,[t0,t1] = Pγ,[t0,t2] .

Vector fiels are locally differential operators of first order. It is hence clear that
the composition of two differential operators in general is not anymore a vector field.
This leads to the definition of the bracket [ , ] of two vector fields. If f ∈ C∞(M),
X, Y ∈ Vect(M) and p ∈M , then

[X, Y ](f)(p) := Xp(Y f)− Yp(XF ) .
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If our Riemannian manifold has a Riemannian structure, one wants that an affine
connection is compatible with the Riemannian structure. This leads to the following:

Definition: Riemannian Connection

Let (M, g) be a Riemannian manifold. ARiemannian connection on (M, g)
is an affine connection such that in addition for every X, Y ∈ Vect(M)

(4) ∇XY −∇YX = [X, Y ]

(5) Xg(Y, Y ′) = g(∇XY, Y
′) + g(Y,∇XY

′)

Remark. If γ : I → M is a smooth curve, then the last condition can also be
rewritten as

d

dt
g(Y, Y ′)γ(t) = g(∇γ̇Y, Y

′)γ(t) + g(Y,∇γ̇Y
′)γ(t)

In particular if Y, Y ′ are parallel vector fields along γ, then

∇γ̇Y = ∇γ̇Y
′ = 0

implies that g(Y, Y ′)γ(t) is constant with respect to t. Thus parallel transport pre-
serves the inner product.

Theorem II.13: Fundamental Theorem in Riemannian Geometry

Given a Riemannian manifold (M, g), there exists a unique Riemannian con-
nection called the Levi-Civita connection.

Recall that a diffeomorphism f : M → M induces a linear map on vector fields
via the pushforward:

(f∗X)p = df−1(p)Xf−1(p)

which preserves the bracket

f∗([X, Y ]) = [f∗X, f∗Y ] .

Lemma II.14

Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇. Let
γ : R →M be a smooth curve and Y ∈ Vect(γ∗TM) a parallel vector field. If
f ∈ Iso(M), then f∗Y is a parallel vector field along f ◦ γ.

Proof. We define

D : Vect(M)× Vect(M) −→ Vect(M)

(X, Y ) 7→ f−1
∗ (∇f∗Xf∗Y ) := DXY
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and show that all five properties of a Riemannian connection are satisfied. It then
follows by uniqueness that

∇XY = f−1
∗ (∇f∗Xf∗Y ) =⇒ f∗(∇XY ) = ∇f∗Xf∗Y.

If now X = γ̇, then
f∗(∇γ̇Y︸︷︷︸

=0

) = ∇f∗γ̇f∗Y = 0

which means that f∗Y is parallel along f∗γ = f ◦ γ.
While the properties (1), (2), (3) are obvious, we have to verify the last two:

(4) DXY −DYX
def
= f−1

∗ (∇f∗Xf∗Y )− f−1
∗ (∇f∗Y f∗X)

f∗ linear
= f−1

∗ (∇f∗Xf∗Y −∇f∗Y f∗X)

(4) of ∇
= f−1

∗ ([f∗X, f∗Y ])

f∗ Lie alg. homo.
= [X, Y ]

(5) g(DXY, Y
′) + g(Y,DXY

′)
def
= g(f−1

∗ ∇f∗XY, Y
′) + g(Y, f−1

∗ ∇f∗Xf∗Y
′)

f∈Iso(M)
= g(∇f∗Xf∗Y, f∗Y

′) + g(f∗Y,∇f∗Xf∗Y
′)

(5) of ∇
= (f∗X)g(f∗Y, f∗Y

′)

= Xg(Y, Y ′). ■

Remark. Diff(M) acts on the set of affine connections as follows: Let f : M → M
be a Diffeomorphism and ∇ : Vect(M) × Vect(M) → Vect(M) be a connection.
Then

D : Vect(M)× Vect(M) −→ Vect(M)

(X, Y ) 7→ f−1
∗ (∇f∗Xf∗Y ) := DXY

is also an affine connection.
In particular, if M = G and f = Lg we say that ∇ is left-invariant if

∇XY = (Lg)
−1
∗ (∇(Lg)∗X(Lg)∗Y ).

II.4 Transvections and Parallel Transport

We saw in the proof of Proposition II.7 that the set of geodesic symmetries is tran-
sitive on a Riemannian globally symmetric space. In particular, we saw that if
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p, q ∈ M and γ : R → M is geodesic such that γ(0) = p and γ(t) = q, then
q = sγ(t/2) ◦ sγ(0)(p).

Definition: Transvections

The isometry Tγ,t := sγ(t/2) ◦ sγ(0) is called transvection along γ.

The first assertion of the following proposition explains the reason for this ter-
minology.

Proposition II.15

Let M be a Riemannian globally symmetric space, γ : R →M a geodesic and
Tγ,t := sγ(t/2) ◦ sγ(0) the associated transvection.

(1) For every c ∈ R,

Tγ,t(γ(c)) = γ(t+ c) .

(2) The differential dγ(0)Tγ,t : Tγ(0)M → Tγ(t)M is the parallel translation
along the geodesic γ, that is, if v = Xγ(0) ∈ Tγ(0)M , then dγ(0)Tγ,tv is
the associated parallel vector field along γ, i.e.

(dγ(0)Tγ,t)(X
v)γ(0) = (Xv)γ(t) (II.4)

(3) The map t 7→ Tγ,t is a one-parameter group in Iso(M)◦.

(4) Tγ,t is independent on the parametrisation of γ.

Proof. (1) Since geodesic symmetries map geodesics onto themselves changing the
orientation, the map Tγ,t must map the geodesic γ onto itself and preserve its
orientation. If we assume that γ is a unit speed parametrization, it follows that
the restriction to the geodesic γ(t) has the form Tγ,t(γ(c)) = γ(c + constant).
Since Tγ,t(γ(0)) = γ(t), then Tγ,t(γ(c)) = γ(t+ c).

(2) Using the definition of Tγ,t and the chain rule we get from the left hand side
of (II.4)

(dγ(0)Tγ,t)(X
v)γ(0) = dγ(0)(sγ(t/2) ◦ sγ(0))(Xv)γ(0)

= (dγ(0)sγ(t/2))(dγ(0)sγ(0))(X
v)γ(0)

= (dγ(0)sγ(t/2)(X
v)γ(0) .

To elaborate on the right hand side of (II.4) we start with the following:
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Claim: For every ℓ ∈ R,

(sγ(ℓ))∗X
v = −Xv . (II.5)

In fact, since sγ(l) is an isometry for every l and Xv is parallel along γ, then
by Lemma II.14 (sγ(l))∗X

v is a vector field parallel along sγ(l) ◦ γ = γ. At the
point γ(l) the value of this new parallel vector field is

(sγ(l))∗(X
v)γ(l) = ds−1

γ(l)
(γ(l))sγ(l)Xs−1

γ(l)
(γ(l))

= (dγ(l)sγ(l)︸ ︷︷ ︸
=−Id

)Xv
γ(l)

= −(Xv)γ(l)

But −Xv is also parallel along γ with value −(Xv)γ(l) at γ(l). By uniqueness
of parallel vector fields with prescribed initial conditions we have proven the
claim.

Because of the claim with ℓ = t/2 and using the definition of the pushforward,
the right hand side of (II.4) becomes

(Xv)γ(t) = −(sγ(t/2))∗(X
v)γ(t)

= −
(
ds−1

γ(t/2)
(γ(t))sγ(t/2)

)
(Xv)s−1

γ(t/2)
(γ(t))

= −
(
dγ(0)sγ(t/2)

)
(Xv)γ(0) ,

which concludes the proof.

(3) This follows from (1), (2) and from the fact that parallel transport is a one-
parameter subgroup. In fact Tγ,t1+t2(γ(c)) = Tγ,t2 ◦Tγ,t1(γ(c)) and furthermore

dγ(t)Tγ,t1+t2 = Pγ,[c,t1+t2+c]

= Pγ,[c+t1,c+t1+t2] ◦ Pγ,[c,c+t1]

= (dγ(c+t1)Tγ,t2) ◦ (dγ(c)Tγ,t1)

= dγ(c)(Tγ,t2 ◦ Tγ,t1).

we conclude by Lemma II.2 that Tγ,t1+t2 = Tγ,t2 ◦ Tγ,t1 .

(4) A unit speed reparametrisation of γ is t 7→ t+ a. Thus

sγ(t/2+a)sγ(a) = sγ(t/2+a)sγ(0)sγ(0)sγ(a)

= Tγ,t+2a(sγ(a)sγ(0))
−1

= Tγ,t+2a(Tγ,2a)
−1

= Tγ,t ■
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Definition: One-parameter Group of Transvections

The map

R → Iso(M)◦

t 7→ Tγ,t

is called a one-parameter group of transvections associated to the
geodesic γ.

II.5 Algebraic Point of View

We have seen that ifM is Riemannian (globally) symmetric, thenM is diffeomorphic
to G/K, where G = Iso(M)◦ and K is the stabiliser of a point in M . In this section
we will deal with the natural question regarding the converse statement: namely,
which homogeneous spaces are Riemannian symmetric spaces?

Definition: Involution

A Lie group automorphism σ : G → G is an involution if σ2 = Id and
σ ̸= IdG.

If σ ∈ Aut(G), we set Gσ := {g ∈ G : σ(g) = g}.

Proposition II.16

LetM be a Riemannian symmetric space and G := Iso(M)◦. Fix a base point
o ∈ M and let K = StabG(o) be the isotropy subgroup of G at o. Then the
automorphism

σ : G→ G

g 7→ sogso

is an involution of G and
(Gσ)◦ ≤ K ≤ Gσ.

Proof. First we verify that g 7→ sogso is involutive. In fact, since s2o is the identity,

σ2(g) = σ(σ(g)) = σ(sogso) = so(sogso)so = s2ogs
2
o = g .

We verify now that K ≤ Gσ, that is that for every k ∈ K, σ(k) = sokso = k. To
see this observe first of all that

σ(k)(o) = (sokso)(o) = so(k(so(o))) = so(k(o)) = so(o) = o.
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Moreover, as doσ(k) : ToM → ToM and doso = −Id , we have that

doσ(k) = do(sokso) = (doso)(dok)(doso) = dok.

By the usual rigidity argument of Lemma II.2, σ(k) = k, that is K ≤ Gσ.
Conversely, to show that (Gσ)◦ ≤ K, it is enough to see that K contains a

neighborhood of the identity in Gσ. Let V ⊂ M be an open neighborhood of
o ∈ M . By continuity of the G−action on M , there exists an open neighborhood
U ⊂ Gσ of e such that g(o) ∈ V for all g ∈ U . But if g ∈ U ⊂ Gσ, then

g = σ(g) = sogso,

so that g(o) ∈ V is a fixed point of so as

sog(o) = gso(o) = g(o).

Since so has only isolated fixed points, we could chose V small enough such that o
is the only fixed point of so in V , which implies that g(o) = o. Thus U ⊂ K. ■

Notice that one cannot say anything more precise of the relation between K and
Gσ, as the following examples show:

Example. (1) Let M = S2, o = e3 and G = Iso(M) = SO(3,R). We can write so
and g ∈ SO(3,R) in block form as

so =

(
−Id2 0
0 1

)
and g =

(
A b
c d

)
,

so that

σ(g) =

(
−Id2 0
0 1

)(
A b
c d

)(
−Id2 0
0 1

)
=

(
A −b
−c d

)
.

Thus

Gσ =

{
g ∈ SO(3,R) : g =

(
A 0
0 d

)
with A ∈ O(2,R), d = ±1, (detA)d = 1

}
has two connected components. Since S2 is simply connected and G is con-
nected, then also K is connected3, so that (Gσ)◦ = K ⪇ Gσ and

K =

{
g ∈ SO(3,R) : g =

(
A 0
0 1

)
with A ∈ SO(2,R)

}
.

3If G is a connected topological group, H ≤ G a closed subgroup such that G/H is simply
connected, then H is connected. In fact, let H◦ be the connected component of the identity of H.
Then G/H◦ ↠ G/H is a covering map. Moreover, since G is connected, then G/H is connected.
Since G/H is simply connected, the covering map must be the identity.
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(2) If M = P(R3) = S2/{±Id}, then G = Iso(M)◦ = Iso(M) = O(3,R)/{±Id}.
Since S2 ↠ P(R3), any isometry of P(R3) lifts to an isometry of S2. If g ∈

StabG([e3]) then g([e3]) = [g(e3)] = [e3], so that g =

(
A 0
0 ±1

)
. Thus StabG([e3]) =

(O(2,R)×O(1,R)) / ± Id , which has two connected components. In this case

also σ : Iso(M) → Iso(M) is σ

(
A b
c d

)
=

(
A −b
−c d

)
, since it commutes with

±Id , so that Gσ = (O(2,R)×O(1,R)) /± Id . Thus (Gσ)◦ ̸= K = Gσ.

We point out that the phenomena arising in these examples can occur only
in symmetric spaces that are compact. In fact a non-compact symmetric space
is contractible and hence in particular simply connected. As a consequence the
covering map G/K◦ ↠ G/K must be the identity and hence K must be connected.

Definition: Riemannian Symmetric Pair

Let G be a connected Lie group and K ≤ G a closed subgroup. The pair
(G,K) is called a Riemannian symmetric pair if:

(1) AdG(K) is a compact subgroup of GL(g), and

(2) There exists an involutive automorphism σ ∈ Aut(G) of G such that

(Gσ)◦ ≤ K ≤ Gσ .

Remark. Proposition II.16 shows that a Riemannian symmetric space yields a
Riemannian symmetric pair. It makes sense to give then the following definition:

Definition: Riemannian Symmetric Pair associated to (M, o)

LetM be a Riemannian (globally) symmetric space, G = Iso(M)◦ and K ≤ G
the isotropy subgroup of a point o ∈M . Then (G,K) is called the Rieman-
nian symmetric pair associated to (M, o).

The following theorem answers in particular the question at the beginningof this
section.
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Theorem II.17

Let (G,K) be a Riemannian symmetric pair with an involutive automorphism
σ of G. Then G/K is a Riemannian symmetric space with respect to any G-
invariant Riemannian metric.
If π : G → G/K denotes the natural projection, so the geodesic symmetry at
o = π(K) = eK ∈ G/K, is defined by the equation

so ◦ π = π ◦ σ . (II.6)

Corollary II.18

The geodesic symmetry so is independent of the choice of the G-invariant
Riemannian metric on M .

Remark. Recall that ker(Ad) = Z(G) and

K⧸K ∩ Z(G)
∼=−→ AdG(K) ≤ GL(g)

so that, loosely speaking, “the hypotheses is a bit less rigid than K being compact
as the center might compensate for some non-compactness.”

Example. LetG := ˜SL(2,R) be the universal coveringof SL(2,R), and let σ : SL(2,R) →
SL(2,R) be defined by σ(g) := tg−1. Let then σ̃ : G→ G be the unique lift of σ and
p : G↠ SL(2,R) be the covering map. Then

Gσ̃ = p−1(SO(2,R)) ∼= R

is not compact but

AdG(G
σ) ∼= SL(2,R)⧸±Id

is compact.

Before we prove Theorem II.17, we have a look at some examples of Riemannian
symmetric pairs:

Example. (1) G < GL(n,R) closed under transposition (e.g. SL(n,R), Sp(2n,R)
of SO(p, q)◦). Let σ ∈ Aut(G) be

σ(g) = tg−1

If G is not a subgroup of O(n,R), then σ is an involution, Gσ = G ∩ O(n,R)
and Gσ is connected such that (G,Gσ) is a Riemannian symmetric pair.
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(2) Let G < GL(n,C) be a closed connected subgroup which is invariant under
g

σ7→ g∗ = tḡ. If G is not a subgroup of the unitary group U(n), then σ is an
involution, Gσ = G∩U(n) is connected and (G,Gσ) is a Riemannian symmetric
pair. One could take for instanceG = SL(n,C),GL(n,C), Sp(2n,C), SO(n,C).

(3) Take G = SO(n,R), Rn = Rp ⊕Rq and r ∈ SO(n,R) such that r|Rp = Idp and
r|Rq = −Id q:

r =

(
Idp 0
0 −Id q

)
Then

Gσ =

{(
A 0
0 B

)
: A ∈ O(p), B ∈ O(q), det(A) det(B) = 1

}
has two connected components and K = (Gσ)◦ or K = Gσ. For example if
p = 1

• K = (Gσ)◦ =⇒ G/K ∼= SO(n)/K ∼= Sn−1

• K = Gσ =⇒ G/K = P(Rn)

(4) The argument works similar for U(n).

We start the proof of Theorem II.17 with two lemmata that are good to empha-
sise.

Lemma II.19: Cartan decomposition

Let (G,K) be a Riemannian symmetric pair with an involutive automorphism
σ, and let g and k denote the Lie algebras of G and K respectively. Then

(1) k = {X ∈ g : deσX = X}, and

(2) if p := {X ∈ g : deσX = −X}, then g = k⊕ p.

Proof. (1) By definition of symmetric pair dim(Gσ)◦ = dimK = dim(Gσ) so that,
if k is the Lie algebra of K,

k =Lie(Gσ)

={X ∈ g : exp tX ∈ Gσ for all t ∈ R}
={X ∈ g : σ(exp tX) = exp tX for all t ∈ R}

(A.1)
= ={X ∈ g : exp(deσ(tX)) = exp(tX), for all t ∈ R}

={X ∈ g : deσX = X} .
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In fact, since (deσ)
2 = Id , deσ is diagonalizable with eigenvalues ±1. If X ∈ g

is an eigenvector with eigenvalue −1, then X /∈ Lie(Gσ) as it would otherwise
contradict that the Lie group exponential is a local diffeomorphism (Proposi-
tion A.3)3)).REVISE THE ARGUMENT

(2) We write

X =
1

2
(X + deσX) +

1

2
(X − deσX)

and since (deσ)
2 = Id , then 1

2
(X + deσX) ∈ k and 1

2
(X − deσX) ∈ p. ■

Lemma II.20

Let (G,K) be a Riemannian symmetric pair with an involutive automorphism
σ, and let p := {X ∈ g : deσX = −X}. Then p is AdG(K)-invariant.

Proof. Notice first that

σ ◦ ck(g) = σ(kgk−1)

σ∈Aut(G)
= σ(k)σ(g)σ(k)−1

K⊂Gσ

= kσ(g)k−1

= ck ◦ σ(g)

and that by differentiation at the identity we get

(deσ)(deck) = de(σ ◦ ck) = de(ck ◦ σ) = (deck)(deσ).

As AdG(k) = deck we can rewrite this as

deσ ◦ AdG(k) = AdG(k) ◦ deσ.

Now if X ∈ p, we have deσ(X) = −X and we conclude that

deσ(AdG(k)X) = AdG(k)(deσX) = AdG(k)(−X) = −AdG(k)(X).

that is,
AdG(k)X ∈ p ■

Proof of Theorem II.17. First of all, the diagram

G
ck //

π
��

G

π
��

G⧸K
k // G⧸K
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commutes and it follows by differentiation that

g
AdG(k) //

deπ ��

g

deπ��

To

(
G⧸K

)
dok // To

(
G⧸K

)
commutes as well, that is

deπ ◦ AdG(k) = dok ◦ deπ.

Moreover, the differential deπ : g → To(G/K) is surjective (as π is surjective)
and has kernel ker deπ = k, so that we get the following commuting diagram

p
AdG(k) //

deπ
��

p

deπ
��

To

(
G⧸K

)
dok // To

(
G⧸K

)
and

p ∼= To

(
G⧸K

)
not only as vector spaces, but also as K-spaces where the action of K on p is via
AdG on To(G/K) is given by dok.

Since AdG(K) is a compact subgroup of GL(g), there exists a positive definite
inner product B on p and, actually, any positive definite inner product can be made
AdG(K) invariant. In fact, if B′ : p× p → R is a positive definite inner product on
p and µ is the Haar measure on AdG(K), then for X, Y ∈ p the inner product

B(X, Y ) :=

∫
AdG(K)

B′(k∗X, k∗Y ) dµ(k)

is obviously AdG(K)-invariant and can be proven to be non-zero.
We set now

Qo : To

(
G⧸K

)
× To

(
G⧸K

)
−→ R

(Xo, Yo) 7→ Qo(X, Y ) := B(deπ
−1Xo, deπ

−1Yo)

which is now a K-invariant inner product on To(G/K) and we extend it to Tp(G/K)
by pulling back Xp, Yp ∈ Tp(G/K), to dog

−1Xp, dog
−1Yp ∈ To(G/K), where g(o) = p

with g ∈ G. Thus

Qp(Xp, Xp) := Qo(dog
−1Xp, dog

−1Yp) , (II.7)
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Notice that this is well defined since Qp is K-invariant. In fact, if g(o) = p = h(o),
then h−1g ∈ K, so that

Qo(dog
−1Xp, dog

−1Yp) = Qo(do(h
−1g)dog

−1Xp, do(h
−1g)dog

−1Yp)

= Qo(doh
−1Xp, doh

−1Yp) .

This gives a G-invariant Riemannian metric on G/K.

We need to define now the geodesic symmetries. We start with so. Once we’ll
have defined this, if g(o) = p as above, then so = g ◦ so ◦ g−1 will give the geodesic
symmetry at any other point.

We define so as a map that satisfies the relation

so ◦ π = π ◦ σ (II.8)

that is

so = π ◦ σ ◦ π−1 .

It is easy to see that so is well-defined. In fact, since K ≤ Gσ, then

so(x) = π(σ(π−1(x))) = π(σ(xk)) = π(σ(x)σ(k)) = π(σ(x)k) = π(σ(x)) .

We see now that s2o = Id . In fact, by applyingonce more so on the left of (II.8),
we obtain

so ◦ (so ◦ π) = so ◦ (π ◦ σ) = (so ◦ π) ◦ σ = (π ◦ σ) ◦ σ = π ◦ (σ)2 = π ,

so that (so)
2 = Id as π is surjective.

Now we show that dpsp = −Id . The commutativity of the diagram

G
σ //

π
��

G

π
��

G⧸K
so // G⧸K

implies by differentiation that also

p
deσ //

deπ
��

p

deπ
��

To

(
G⧸K

)
doso // To

(
G⧸K

)
commutes. Thus if X ∈ p,

doso(deπ(X)) = deπ(deσ(X)) = −deπ(X) ,
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that is doso = −Id . Writing p = (g)o and recalling that sg(o) = gsog
−1 we see that

also

dg(o)sg(o) = dg(o)(gsog
−1)

= (dog) (doso)︸ ︷︷ ︸
=−Id

(dg(o)g
−1)

= −(dog)(dg(o)g
−1)

= −Id

We will use this to that sp is an isometry, that is it preserves any G-invariant
Riemannian metric Q

Qp(Xp, Yp) = Qso(p)((dpso)Xp, (dpso)Yp) for all p ∈M,∀Xp, Yp ∈ TpM

Before doing this, we have to gather some more information. Namely, we will
see that the geodesic symmetry at o intertwines the isometry g and its image under
σ. In other words, applying twice the formula (II.6) defining the geodesic symmetry
so, we obtain that for x ∈ G

so ◦ g(xK) = so ◦ π(gx)
(II.6)
= π ◦ σ(gx)
= σ(gx)K

= σ(g)σ(x)K

= σ(g)(π ◦ σ)(x)
(II.6)
= σ(g)(so ◦ π)(x)
= σ(g) ◦ so(xK) ,

that is

so ◦ g = σ(g) ◦ so . (II.9)

Now

Qso(p)((dpso)Xp, (dpso)Yp) = Qso(g(o))((dg(o)so)(dog)Xo, (dg(o)so)(dog)Yo)

= Qso(g(o))((do(so ◦ g)Xo, (do(so ◦ g)Yo)
(II.9)
= Qσ(g)(o)((do(σ(g) ◦ so)Xo, (do(σ(g) ◦ so)Yo)
= Qσ(g)(o)(doσ(g) dosoXo︸ ︷︷ ︸

=−Xo

, doσ(g) dosoYo︸ ︷︷ ︸
=−Yo

)

= Qσ(g)(o)(doσ(g)Xo, doσ(g)Yo)

σ(g)∈G
= Qo(Xo, Yo)

= Qo(dog
−1Xp, dog

−1Yp)

= Qp(Xp, Yp) .
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Hence so is an isometry. ■

Remark. Let M be a Riemannian symmetric space and (G,K) the associated
Riemannian symmetric pair with regard to an involution σ ∈ Aut(G). We will
prove that σ is unique.

Let σi, i = 1, 2, be two involutions of G such that

(Gσi)◦ ≤ K ≤ Gσi for i = 1, 2.

Then
π ◦ σ1 = so ◦ π = π ◦ σ2

and thus

σ1(h)(o) = σ2(h)(o) for all h ∈ G. (II.10)

We still need to see that

σ1(h)(p) = σ2(h)(p) ∀h ∈ G,∀p ∈M.

Let thus g ∈ G be such that g(o) = p and let g′ be such that σ1(g
′) = g. Then

σ1(h)(p) = σ1(h)σ1(g
′)(o)

= σ1(hg
′)(o)

(II.10)
= σ2(hg

′)(o)

= σ2(h)σ2(g
′)(o)

= σ2(h)(p)

showing uniqueness.

The uniqueness of the involutive automorphism of a Riemannian symmetric pair
allows us to give the following definition:

Definition: Cartan Involution

If (G,K) is a Riemannian symmetric pair with involution σ, the Cartan
involution is defined as

Θ := deσ : g → g.

The corresponding eigenspace decomposition g = k ⊕ p is called the Cartan
decomposition of g with respect to Θ.

Remark. We saw in Lemma II.19 that such a decomposition exists and now we
also know that it is unique.
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Proposition II.21

Let g = k ⊕ p be the Cartan decomposition of g with respect to the Cartan
involution Θ. Then

[k, k] ⊂ k , [k, p] ⊂ p , [p, p] ⊂ k .

In particular k ⊂ g is a Lie subalgebra, while p ⊂ g is only a subvector space.

Proof. Let X, Y ∈ g be eigenvectors with eigenvalues λ, µ ∈ {±1} respectively.
Then

Θ[X, Y ] = [ΘX,ΘY ] = [λX, µY ] = λµ[X, Y ] ,

that is [X, Y ] belongs to the eigenspace of Θ with eigenvalue λµ. ■

II.6 Exponential Maps and Geodesics

Let (G,K) be a Riemannian symmetric pair associated to a a Riemannian symmetric
space M with base point o ∈ M . By the last Remark, there is a unique involution
σ and hence the Cartan decomposition of g is unique. Let π : G → M be the
projection map g 7→ g(o), let exp: g → G be the Lie group exponential map and
Expo : ToM →M the Riemannian exponential map.

The following theorem gives the relation between the two exponential maps,
namely:

Theorem II.22

The following diagram

p
deπ //

exp

��

ToM

Expo
��

G
π //M

commutes, that is π(exp(X)) = Expp(deπ(X)) for any X ∈ p.
In particular, if X ∈ p, then

t 7→ (exp(tX))(o) ∈M

is the geodesic through o ∈M at t = 0 with tangent vector deπ(X) ∈ To(M).

Proof. If X ∈ p, let γ(t) := Expo(tdeπ(X)) the geodesic in M through o at t = 0
with tangent vector deπ(X) ∈ ToM . Let Tγ,t = sγ(t/2) ◦ sγ(0) = sγ(t/2) ◦ so be the
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transvection along γ. Since Tγ,t is a one-parameter subgroup in G, there exists
Y ∈ g such that Tγ,t = exp(tY ) ∈ G. We claim that actually Y ∈ p, that is that
deσ(Y ) = −Y . In fact, using that σ(g) = sγ(0)gsγ(0) we have

exp(tdeσ(Y )) = exp(deσ(tY ))

= σ(exp(tY ))

= sγ(0) exp(tY )sγ(0)

= sγ(0)Tγ,tsγ(0)

= sγ(0)sγ(t/2) sγ(0)sγ(0)︸ ︷︷ ︸
=Id

= s−1
γ(0)s

−1
γ(t/2)

= (sγ(t/2)sγ(0))
−1

= (Tγ,t)
−1

= Tγ,−t

= exp(−tY ).

Observe that

π(exp(tY )) = π(Tγ,t)

= π(sγ(t/2) ◦ sγ(0))
= sγ(t/2) ◦ sγ(0)(o)
= sγ(t/2)γ(0)

= γ(t)

= Expo(tdeπ(X)) ,

so it is enough to show that X = Y .
Since the tangent vector at t = 0 to the geodesic t 7→ Expo(tdeπ(X)) is deπ(X),

it will be enough to show that the tangent vector at t = 0 to t 7→ π(exp(tY )) is
deπ(Y ). Since deπ is an isomorphism on p, this would conclude that X = Y . To
find the tangent vector at t = 0 to t 7→ π(exp(tY )), we evaluate the derivative at
t = 0 and obtain

d

dt

∣∣∣∣
t=0

π(exp(tY )) = deπ
d

dt

∣∣∣∣
t=0

exp(tY ) = deπ(Y )

as we wanted. ■

The above theorem shows, in particular, that the Riemannian exponential map
Exp: TM →M does not depend on its Riemannian metric and gives a formula for
the geodesics in M .
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We are now interested in finding a formula for the derivative of the Riemannian
exponential map at a point X ∈ p, a formula that we will use both in computing the
curvature tensor in § II.11 and in characterizing the totally geodesic submanifolds
of a Riemannian symmetric space in § II.7.

Theorem II.23

Let G be a Lie group with Lie algebra g and let exp: g → G the Lie group
exponential map. By identifying TXg ∼= g, we have that

dX exp: TXg ∼= g → Texp(X)G

is given by

dX exp = deLexpX ◦
∞∑
n=0

(adn
g X)

(n+ 1)!
(II.11)

Let M = G/K be a symmetric space, o ∈ M a base point with K = StabG(o)
and π : G → G/K. Recall that deπ : p → To(G/K) is an isomorphism and we can
define Exp ◦ deπ : p → To(G/K) → G/K. Then we have:

Corollary II.24

The differential

dX(Exp ◦ deπ) : TXp ∼= p → T(Exp(X)◦de(X))(o)M

of the Riemannian exponential map

Expo ◦ deπ : p → G/K

is given by

dX(Expo ◦ deπ) = doLexpX ◦
∞∑
n=0

(TX)
n

(2n+ 1)!
, (II.12)

where TX = (adgX)2 for X ∈ p.

Proof. We recall that the diagram

G

Lg

��

π // G⧸K
Lg

��

G
π // G⧸K
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commutes, so that

π ◦ LexpX = LexpX ◦ π . (II.13)

In Theorem II.22 we have proven that for anyX ∈ p, π◦ exp(X)|p = Expe ◦deπX|p,
so that, if we set L(X) :=

∑∞
n=0

(− adg X)n

(n+1)!
,

dX(Exp0 ◦ deπX|p) =dX(π ◦ exp(X)|p)
=(dexpXπ) ◦ dX(exp |p)
=(dexpXπ) ◦ dX(exp)|p
=(dexpXπ) ◦ deLexpX ◦ L(X)

=de(π ◦ LexpX) ◦ L(X)|p
=de(LexpX ◦ π) ◦ L(X)|p
=(doLexpX) ◦ (deπ) ◦ L(X)|p

where we used in the fourth equality Theorem II.23 and in the sixth one (II.13).
Now observe that, because of Proposition II.21, if Y ∈ p,

adg(X)n(Y ) ∈

{
k if n is odd

p if n is even,

so that

deπ ◦ adg(X)n(Y )

{
= 0 if n is odd

= adg(X)n(Y ) if n is even.

Thus

deπ ◦ L(X)|p = de ◦
∞∑
n=0

(− adgX)n

(n+ 1)!

∣∣∣∣∣
p

=
∞∑
n=0

(adgX)2n

(2n+ 1)!
, (II.14)

which completes the proof. ■

II.7 Totally Geodesic Submanifolds

Definition: Totally Geodesic Submanifolds

Let N ⊂M be a submanifold of a Riemannian manifold (M, g). We say that
N is geodesic at p ∈ N if for every v ∈ TpN the M -geodesic through p with
tangent vector v is all contained in N .
We say that N is totally geodesic if it is geodesic at every point.
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Remark. If (M, g) is a Riemannian manifold and N ⊂M a submanifold, then g|N
is a Riemannian metric on N . A priori, if p, q ∈ N , then

dM(p, q) ≤ dN(p, q)

where dM , dN are the distances induced by the metrics g and g|N respectively.

Fact. Assume N ⊂M totally geodesic. Then

(1) the inclusion (N, dN) ↪→ (M,dM) is locally distance preserving and

(2) every N -geodesic is an M -geodesic and every M -geodesic contained in N is
an N -geodesic.

Example. Totally geodesic submanifolds are not very common.

(1) In Rn all linear subspaces and their translates are totally geodesic. S2 ⊂ R3

however is not.

(2) In Sn the totally geodesic subspaces are the intersection of Sn with a linear
subspace of Rn+1.

(3) (Cartan) LetM be a Riemannian manifold such that for any p ∈M and every
2-dimensional plane P ⊂ TpM , there exists a totally geodesic submanifold
through p which is tangent to P . Then M has constant curvature.

Theorem II.25

Let (M, g) be a Riemannian manifold and N ⊂ M a connected submanifold.
Then N is totally geodesic if and only if the parallel transport with respect
to g along curves in N preserves the tangent spaces (i.e. parallel transport
preserves {TpN : p ∈ N}).

Example. (Being totally geodesic is a local property)

Tn = En
⧸Zn π : En → Tn

If P ⊂ En is a k-dimensional subspace, k < n, then π(P ) is a totally geodesic
submanifold of Tn. However, P can be chosen is such a way that π(P ) is dense in
Tn (e.g. n = 2 and P the irrational line).

Definition: Lie Triple System

A subspace n of a Lie algebra g is a Lie triple system if [[X, Y ], Z] ∈ n for
all X, Y, Z ∈ n.
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Example. p ⊂ g since [p, p] ⊂ k and [p, k] ⊂ p.

Lie triple systems correspond to totally geodesic submanifolds in the following
sense:

Theorem II.26

Let M = G/K be a Riemannian symmetric space with o ∈ M a base point,
K = Stabo(G) where G = Iso(M)◦. Let g = k ⊕ p be the Cartan decomposi-
tion.

(1) If n ⊂ p is a Lie triple system, then N := (Expo ◦ deπ)(n) ⊂ M is
a totally geodesic submanifold through o ∈ M and such that ToN =
deπ(n).

(2) If N ⊂M is a totally geodesic submanifold through o, then
n := (deπ)

−1(ToN) is a Lie triple system.

Remark. If N ⊂M is a totally geodesic submanifold, let p ∈ N and g ∈ G be such
that g(o) = p. Then L−1

g (N) is a totally geodesic submanifold through o to which
one can apply the theorem.

Lemma II.27

If n ⊂ g is a Lie triple system, then

• [n, n] is a subalgebra and

• n+ [n, n] is a subalgebra.

Proof. If X, Y, Z,W ∈ n, then, the Jacobi identity applied to [X, Y ], Z and W reads

0 = [[X, Y ], [Z,W ]] + [[Y, [Z,W ]], X] + [[[Z,W ], X], Y ] ,

where [Y, [Z,W ]], [[Z,W ], X] ∈ n. Hence

[[X, Y ], [Z,W ]] = −[[Y, [Z,W ]], X]− [[[Z,W ], X], Y ] ∈ [n, n] .

It follows that

[n+ [n, n], n+ [n, n]] ⊂ [n, n] + [n, [n, n]] + [[n, n], [n, n]]

⊂ n+ [n, n]. ■

Proof of Theorem II.26. (1) Let n ⊂ p be a Lie triple system. By the lemma,
n + [n, n] ⊂ g is a subalgebra and g = Lie(G). Let now G′ < G be the
connected Lie subgroup such that

Lie(G′) = n+ [n, n] := g′.
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Let then

G′ →M

g′ 7→ g′(o)

and let K ′ = StabG′(p0). Then K ′ < G′ is closed since the inclusion G′ ↪→ G
is continuous. Thus we can give M ′ = G′ · o the topology and differential
structure of G′/K ′. It follows thatM ′ is a submanifold ofM and o ∈M ′ ⊂M
is a base point.

We claim now that ToM
′ = deπ(n). Since M ′ = G′/K ′ and Lie(G′) = g′ =

n + [n, n] it is enough to see that Lie(K ′) = [n, n]. In fact, K ′ = K ∩ G′ and
thus

Lie(K ′) = k ∩ (n+ [n, n]) = [n, n]

since n ⊂ p (and hence k∩ n = (0)) and [n, n] ⊂ k (since [p, p] ⊂ k). So given a
Lie triple system n, we found a submanifold M ′ ⊂ M whose tangent space is
the Lie triple system. We are left to show that M ′ is totally geodesic.

Let X ∈ n, v := (deπ)(X) ∈ ToM
′. The M -geodesic through o with tangent

vector v is

t 7→ exp(tX)∗(o) = Expo(tv).

But ∀t ∈ R, tX ∈ n and thus exp(tX) ∈ G′ which implies exp(tX)∗ · o ∈ M ′

and hence that M ′ is totally geodesic.

(2) We want to show that if N ⊂ M is totally geodesic, then n := (deπ)
−1ToN is

a Lie triple system.

Claim: If X, Y ∈ n, then TX(Y ) ∈ n.

Using this we want to show that if X, Y, Z ∈ n, then [[X, Y ], Z] ∈ n. In
particular we observe

TY+Z(X) = adg(Y + Z)(adg(Y + Z)(X))

=[Y + Z, [Y + Z,X]]

=[Y + Z, [Y,X] + [Z,X]]

=[Y, [Y,X]] + [Y, [Z,X]] + [Z, [Y,X]] + [Z, [Z,X]]

=TY (X) + TZ(X) + [Y, [Z,X]] + [Z, [Y,X]] ,

so that

[Y, [Z,X]] + [Z, [Y,X]] = TY+Z(X)− TY (X)− TZ(X) ∈ n .
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By the Jacobi identity

n ∋ [Y, [Z,X]] + [Z, [Y,X]] =[Y, [Z,X]] + [[Z, Y ], X] + [Y, [Z,X]]

=2[Y, [Z,X]] + [[Z, Y,X]]

=2[Y, [Z,X]] + [X, [Y, Z]]

(II.15)

and, exchanging the roles of X and Y ,

2[X, [Z, Y ]] + [Y, [X,Z]] ∈ n . (II.16)

Hence it follows from (II.15) and (II.16), and using twice the Jacobi identity,
that

n ∋2[Y, [Z,X]] + [X, [Y, Z]]− (2[X, [Z, Y ]] + [Y, [X,Z]])

=2[X, [Z, Y ]] + 2[Z, [Y,X]] + [X, [Y, Z]]− (2[X, [Z, Y ]] + [Y, [X,Z]])

=3[Y, [Z,X]] + 3[X, [Y, Z]]

=3[Z, [Y,X]] ,

that is n is a Lie triple system.

Proof of Claim: Take X ∈ n = (deπ)
−1ToN . Then we clearly have deπ(X) ∈

ToN and
(exp(tX))(o) = (Expo deπ(tX))

is anM -geodesic through o such that the tangent vector at o is deπ(X) ∈ ToN .
As N is totally geodesic,

t 7→ Expo ◦deπ(X) ∈ N ∀t ∈ R.

Now
n

deπ−→ ToN
Expo−→ N

and thus
dtX(Expo ◦deπ) : TtXn ∼= n → T(Expo ◦deπ)(tX)N

It follows from Corollary II.24 that, since n ⊂ p, for all Y ∈ n,

dtX(Expo ◦deπ)(Y ) = doLexp tX ◦ deπ

(
∞∑
n=0

(TtX)
n(Y )

(2n+ 1)!

)
.

Applying the inverse of doLexp(tX) to both sides we get

(doLexp(tX))
−1 dtX(Expo ◦deπ)(Y )︸ ︷︷ ︸

∈T(Expo ◦deπ)(tX)

= deπ

(
∞∑
n=0

(TtX)
n(Y )

(2n+ 1)!

)
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and we claim that

deπ

(
∞∑
n=0

(TtX)
n(Y )

(2n+ 1)!

)
∈ ToN

By Theorem II.22 the curve t 7→ exp(tX)(o) is a geodesic through o and
Tγ,t = exp(tX) is the transvection whose derivative dTγ,t : Tγ(0) → Tγ(t) realizes
the parallel transport along γ (Proposition II.15). Therefore, do(Lexp(tX))

−1

is the parallel transport along t 7→ exp(tX). Since N is totally geodesic,
this geodesic is completely contained in N and parallel transport preserves
{TpN : p ∈ N}:

∞∑
n=0

T n
tX(Y )

(2n+ 1)!
∈ n

We write

ϕ(t) : =
∞∑
n=0

T n
tX(Y )

(2n+ 1)!

=
∞∑
n=0

adg(tX)2n(Y )

(2n+ 1)!

= t2
adg(X)2(Y )

3!
+ t4(...)

and

ϕ′′(t)

∣∣∣∣
t=0

=
1

3
(adg(X))2(Y ) =

1

3
TX(Y ) ∈ n

which concludes the proof.
■

Remark. Let (G,K) be a Riemannian symmetric pair with involution σ and let
n ⊂ g be a Lie triple system with associated totally geodesic submanifold N =
Exp(n) through o. Then we saw that N ′ = G′/K., where G′ is such that Lie(G′) =
n + [n, n] ⊆ g and K ′ = K ∩ G′ is such that Lie(K ′) = [n, n]. We look for the
Riemannian symmetric pair associated to N . If Θ := deσ is the Cartan involution,
then

ΘX = −X ∀X ∈ n ⊂ p

and moreover
Θ([n, n]) = [Θ(n),Θ(n)] ⊂ [n, n] .

Thus
Θ(g′) = g′ and σ(G′) = G′ ,

since G′ is connected.
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Let now σ′ := σ|G′ be an involution of G′. We want to show that

((G′)σ
′
)◦ ≤ K ′ ≤ (G′)σ

′
.

It so, then (G′, K ′) is a Riemannian symmetric pair associated to N , which is there-
fore a Riemannian symmetric space N ∼= G′/K ′.

Note now that

K ′ = K ∩G′ ≤ (Gσ) ∩G′ ≤ (G′)σ
′

K ′ = K ∩G′ ≥ (Gσ)◦ ∩G′

but (Gσ)◦ ∩G′ is an open subgroup of G′ and thus

(Gσ)◦ ∩G′ ≥ ((G′)σ
′
)◦ .

II.8 Example: Riemannian Symmetric Pair

(SL(n,R), SO(n,R))
Let us consider

G = SL(n,R) = {g ∈Mn×n(R) : det g = 1} .

We consider the involutive automorphism σ : G→ G, defined by g 7→ (gt)−1. Then

Gσ = {g ∈ G : (gt)−1 = g} = {g ∈ G : gtg = e} = SO(n) =: K .

SO(n,R) is compact, thus (SL(n,R), SO(n,R)) is a Riemannian symmetric pair.
Since de det = tr, the Lie algebra g = Lie(G) = sl(n,R) consists of all (n × n)-

matrices with trace 0 and entries in R and the exponential map exp: sl(n,R) →
SL(n,R) is the matrix exponential

exp(X) =
∞∑
n=0

Xn

n!
.

It follows that
exp
(
X t
)
= (exp(X))t

and thus also that
σ(exp(tX)) = exp

(
−tX t

)
.

It is then immediate that the Cartan involution Θ: sl(n,R) → s,R) is given by

Θ(X) =
d

dt

∣∣∣∣
t=0

exp
(
−tX t

)
= −X t
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By noting that

k = {X ∈ sl(n,R) : ΘX = X}
=
{
X ∈ sl(n,R) : −X t = X

}
p =

{
X ∈ sl(n,R) : X t = X

}
the Cartan decomposition is given

X =
1

2
(X −X t)︸ ︷︷ ︸

∈k

+
1

2
(X +X t)︸ ︷︷ ︸

∈p

,

that is, the decomposition of X into its antisymmetric and symmetric part.
We then want an AdG(K)-invariant inner product on p. For this we recall that

AdG : G→ GL(g) is conjugation since G < GL(n,R)

AdG(g)(X) = gXg−1.

Since Mn×n(R) ≃ R2, the inner product

Mn×n(R)×Mn×n(R) −→ R
(A,B) 7→ Tr

(
AtB

)
corresponds to the standard inner product on Rn2

and hence is clearly AdG(O(n,R))-
invariant. On p this actually reduces to

(A,B) 7→ Tr(AB).

Consider the model

P1(n) =
{
S ∈Mn×n(R) : St = S, detS = 1, S ≫ 0

}
for SL(n,R)/ SO(n,R) where SL(n,R) acts on P1(n) via

g · S := gStg.

Notation. Take Id ∈ P1(n) as base point. We proved in Theorem II.22 that if
X ∈ p, then

(ExpId ◦ deπ)(X) = (expX) · Id
and we thus write

Exp := ExpId ◦deπ

that is,

p T1P ′1n) P1(n)

Exp

deπ Exp
1
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Fact. Exp: p → P1(n) is a diffeomorphism and if we consider Exp(0),Exp(X) ∈
P1(n), then there exists a unique geodesic between those two points (t 7→ Exp(tX))
and this geodesic is length minimizing

d(Exp(X),Exp(0)) = ∥X∥.

Let now X ∈ p and note that

Exp(X) = (expX)∗1

= exp(X)1 exp(tX)

= exp(2X)

and

exp(−X)∗ Exp(X) = exp(−X) Exp(X) exp(−X)

= exp(−X) exp(2X) exp(−X)

= 1 ∈ P ′(n).

Let also

a =
{
diag(x1, ..., xn) :

∑
xi = 0

}
such that a ⊂ p since at = a and [a, a] = 0. It follows that a is a Lie triple system
and thus also that

F = Exp(a) =
{
diag(x1, ..., xn) :

∏
xi = 1

}
is a totally geodesic submanifold.

We compute the distance in F . Take X1, X2 ∈ a and Exp(X1),Exp(X2) ∈ F .
Then

d(Exp(X1),Exp(X2)) = d(exp(−X2)∗ Exp(X1),1)

= d(exp(−X2) exp(2X1) exp(−X2),1)

[X1,X2]=0
= d(exp(2X1 − 2X2),1)

Fact
= ∥X1 −X2∥

We have thus shown that Exp: a → F is an isometry. We call F a flat and note
that dim(F ) = n − 1. More generally we will see that sl(n,R) contains a maximal
Abelian subalgebra that is diagonalizable (= a) and we will call the dimension the
rank.
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II.9 Decomposition of Symmetric Spaces

II.9.1 orthogonal Symmetric Lie Algebras

We have seen that a globally symmetric space M together with the choice of a base
point o ∈M gives rise to a pair (g,Θ), where g is the Lie algebra of (the connected
component of) the group of isometries of M and Θ is the Cartan involution, that
is the differential Θ = deσ of the involutive automorphism σ of G induced by the
geodesic symmetry at o.

Recall. The Killing Form of a Lie algebra g is a bilinear symmetric form

Bg : g× g → K = field of definition of g

(X, Y ) 7→ Tr(adg(X) adg(Y ))

Recall also the following properties of the Killing form:

(1) If α ∈ Aut(g), then

Bg(α(X), α(Y )) = Bg(X, Y ) ∀X, Y ∈ g

(2) If D ∈ Der(g) is a derivation, that is, D satisfies

D[X, Y ] = [DX, Y ] + [X,DY ]

then we have that
Bg(DX, Y ) +Bg(X,DY ) = 0.

In particular, if Z ∈ g, then adg(Z) ∈ Der(g) and hence

Bg(adg(Z)(X), Y ) +Bg(X, adg(Z)(Y )) = 0

Properties of (g,Θ) related to a Riemannian symmetric pair (G,K).

(1) Θ is an involution of g and Lie(K) = k is the eigenspace with eigenvalue 1.

(2) adg = deAdG and since K is compact, AdG(K) < GL(g) is a compact subgroup.
Moreover, Lie(AdG(K)) = adg(k).

Definition: Compactly Embedded

Let g be a Lie algebra. We say that a subalgebra u ⊂ g is compactly
embedded if adg(u) ⊂ gl(g) is the Lie algebra of a compact subgroup U <
GL(g).
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Remark. We would like to say that U = AdG(K), K < G compact and K ∼= U
but K might have a center

U = AdG(K)⧸Z(G) ∩K

Fact. Any such group U is a subgroup of Aut(g).
Proof: By naturality of the adjoint representation we have for all t ∈ R, X ∈ g

AdG(exp(tX)) = exp(adg(tX)).

But AdG(g) = decg which implies that AdG(g) ∈ Aut(g) for every g ∈ G. It follows
that

Lie(U) = adg(u) ⊂ Lie(Aut(g))

and thus that U◦ < Aut(g). Since U is connected, this implies that U ⊂ Aut(g)
which concludes the proof.

Definition: (Effective) orthogonal Symmetric Lie Algebra

(1) An orthogonal symmetric Lie algebra (OSLA) is a pair (g,Θ),
where g is a Lie algebra over R and Θ ∈ Aut(g) is an involutive auto-
morphism of g such that its set of fixed points u := {X ∈ g : ΘX = X}
is a compactly embedded subalgebra of g.

(2) The orthogonal symmetric Lie agebra (g,Θ) is effective if g ∩ z = {0},
where z ⊂ g is the center of g.

Remark. We note that since Θ is an involution (Θ2 = Id) it can only have the
eigenvalues ±1. We write

u = {X ∈ g : ΘX = X}
e = {X ∈ g : ΘX = −X}

for the corresponding eigenspaces.

The prominent example of effective orthogonal symmetric Lie algebra is the pair
(g,Θ) coming from a globally Riemannian symmetric space (see Theorem II.11 ).

Lemma II.28

(1) The decomposition g = u ⊕ e is orthogonal with respect to the Killing
form Bg.

(2) If g is effective, Bg

∣∣
u×u

is negative definite.
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Proof. (1) Let X ∈ u and Y ∈ e be arbitrary, so that, by definition, ΘX = X and
ΘY = −Y . Moreover, since Θ is a Lie algebra automorphism,

Bg(X, Y ) = Bg(ΘX,ΘY ) = Bg(X,−Y ) ,

which implies that Bg(X, Y ) = 0.

(2) Let ⟨, ⟩ be an inner product on g that is U -invariant. Therefore U ⊂ O(g, ⟨·, ·⟩)
and Lie(U) = adg(u) ⊂ o(g, ⟨·, ·⟩), that is, elements in adg(u) are skew-symmetric
with regard to ⟨·, ·⟩. Thus if X ∈ u and {e1, ..., en} is a basis of g, then

Bg(X,X) = Tr
(
adg(X)2

)
=

n∑
j=0

⟨adg(X)2ej, ej⟩

= −
n∑

j=1

⟨adg(X)ej, adg(X)ej⟩

= −
n∑

j=1

∥adg(X)ej∥2

≤ 0

where we have equality if and only if adg(X) = 0, that is X ∈ u ∩ z(g) = (0).
■

Definition: Compact, Non-compact and Euclidean Type

Let (g,Θ) be an effective orthogonal symmetric Lie algebra with Killing form
Bg, and let g = u ⊕ e be the decomposition of g into the eigenspaces of Θ
corresponding respectively to the +1 and the −1 eigenvalue.

(1) (g,Θ) is of compact type if Bg is negative definite.

(2) (g,Θ) is of non-compact type if Bg

∣∣
e
is positive definite.

(3) (g,Θ) is of Euclidean type if e is an Abelian ideal.

Recall. (1) The Killing form Bg restricted to u is negative definite, since u is com-
pactly embedded.

(2) A Lie algebra g is simple if

• g is not Abelian and

• g contains no non-trivial ideals.
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(3) A Lie algebra g is semisimple if it is the direct sum of simple ideals:

g =
⊕
j

gj.

Recall also that g is semisimple if and only if Bg is non-degenerate.

Remark. In cases (1) and (2) of the Definition, g is semisimple.
Moreover, (g,Θ) is of Euclidean type if and only if [e, e] = 0.

The following will be needed for the proof of Theorem II.41. A proof is given in
Marcs Notes Chapter IV, part 1.

Proposition II.29

If g is semisimple, then
Der(g) = ad(g).

In other words, every derivation of g is inner.

We say that a pair (G,U) is associated with an orthogonal symmetric
Lie algebra (g,Θ), if G is a connected Lie group with Lie algebra g, and U is
a Lie subgroup of G with Lie algebra u. So one can define the type of a pair
(G,U), according to the type of the effective orthogonal Lie algebra to which it is
associated. Similarly, the type of a globally symmetric space M is defined as the
type of an associated symmetric pair (G,K) naturally associated to an effective
orthogonal symmetric Lie algebra (g,Θ) as above.

Notice that, even though every choice of a base point gives rise a priori to a
different Riemannian symmetric pair, the types of such pairs are not changed: if
instead of a base point o ∈ M we take the base point x = g · o, for g ∈ G, then the
Lie algebra g is the same and the involution Θ is replaced by AdG(g)Θ.
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Theorem II.30: Decomposition Theorem for OSLA

Let (g,Θ) be an effective orthogonal symmetric Lie algebra. Then

g = g− ⊕ g0 ⊕ g+

is a decomposition into Θ-invariant ideals such that

(1)
(
g−,Θ

∣∣
g−

)
is of non-compact type.

(2)
(
g0,Θ

∣∣
g0

)
is of Euclidean type.

(3)
(
g+,Θ

∣∣
g+

)
is of compact type.

Moreover, the decomposition is orthogonal with regard to Bg.

How to construct g+, g0, g−? Note that g = u⊕e is a U -invariant decomposition.
Let then ⟨·, ·⟩ be a U -invariant inner product on e. Since Bg

∣∣
e
is a symmetric bilinear

form, there exists a unique A ∈ End(e) symmetric such that

Bg(X, Y ) = ⟨AX, Y ⟩ ∀X, Y ∈ e,

As U ⊂ Aut(g) and Bg is U -invariant, we note that if X, Y ∈ e and k ∈ U are
arbitrary, then

Bg(X, Y ) = Bg(kX, kY ) ⇐⇒ ⟨AX, Y ⟩ = ⟨AkX, kY ⟩ = ⟨k−1AkX, Y ⟩,

hence Ak = kA and therefore

A ◦ adg(X) = adg(X) ◦ A ∀X ∈ u.

AsA is symmetric, there exists an orthonormal basis of e which we write {f1, ..., fn}
consistingo f eigenvectors of A with eigenvalues {β1, ..., βn}. By the above property
Ak = kA, they are also preserved by U and adg(u).

Let us define

e− =
∑
βj<0

Rfj , e0 =
∑
βj=0

Rfj , e+ =
∑
βj>0

Rfj . (II.17)
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Lemma II.31

The subspaces e0, e+ and e− satisfy the following relations:

(1) e0 = {X ∈ g : Bg(X, Y ) = 0 for all Y ∈ g}.

(2) [e0, e] = {0} and e0 is an Abelian ideal in g.

(3) [e−, e+] = {0}.

Proof. (1) Write
g⊥ = {X ∈ g : Bg(X, Y ) = 0 ∀Y ∈ g}

and note that g⊥ is Θ-invariant since Bg is Θ-invariant. Thus we have a decom-
position of g⊥ induced by the one of g

g⊥ = (g⊥ ∩ u)⊕ (g⊥ ∩ e)

As (g,Θ) is effective, Bg

∣∣
u×u

is negative definite and therefore g⊥ ∩ u = (0)

implying that g⊥ ⊂ e. Therefore

g⊥ = {X ∈ e : Bg(X, Y ) = 0 ∀Y ∈ g}
(II.28)
= {X ∈ e : Bg(X, Y ) = 0 ∀Y ∈ e}
= {X ∈ e : ⟨AX, Y ⟩ = 0 ∀Y ∈ e}
= ker(A)

= e0

by definition.

(2) Note first that [e0, e] ⊂ [e, e] ⊂ u. Take then X ∈ e0, Y ∈ e, Z ∈ u and write

Bg([X, Y ], Z) = −Bg([Y,X], Z)

= −(−Bg(X, [Y, Z]))

= ⟨AX, [Y, Z]⟩
= 0

since A ∈ e0 = ker(A). But Bg

∣∣
u×u

is negative definite and as Z ∈ u is arbitrary

we must have [X, Y ] = 0 for every X ∈ e0, Y ∈ e. In particular thus [e0, e0] = 0
showing that e0 is Abelian. Finally we note that,

[e0, g] = [e0, u] + [e0, e] = [e0, u] = e0

because u commutes with A and therefore preserves e−, e0, e+.
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(3) Take X ∈ e−, Y ∈ e+ and Z ∈ u. Then

Bg([X, Y ], Z) = −Bg(Y, [X,Z])

= −⟨AY︸︷︷︸
∈e+

, [X,Z]︸ ︷︷ ︸
∈e−

⟩

= 0

as e−, e+ are orthogonal with regard to ⟨·, ·⟩ since they are defined using an
orthonormal basis. As before, this implies

[X, Y ] = 0 ∀X ∈ e−, Y ∈ e+. ■

We now define

u+ := [e+, e+] u− := [e−, e−] and u0 := u⊖Bg (u+ ⊕ u−) ,

where the last equality denotes the orthogonal complement of u+ ⊕ u− in u with
respect to Bg.

Lemma II.32

The subspaces u0, u+, u− are orthogonal with respect to Bg and their direct
sum is u.

Proof. To see that u+ and u− are orthogonal with respect to Bg, let X±, Y± ∈ e±.
Then, by adg-invariance of Bg, we have

Bg([X+, Y+], [X−, Y−]) = Bg(X+, [Y+, [X−, Y−]) = 0 ,

where the last equality follows from the Jacobi identity via

[Y+, [X−, Y−] = −[X−, [Y−, Y+]]− [Y−, [Y+, X−]] = −[X−, 0]− [Y−, 0] = 0 . ■

Lemma II.33

We have:

(1) uε are ideals in u that are pairwise orthogonal with regard to Bg.

(2) [u0, e−] = [u0, e+] = {0}.

(3) [u−, e0] = [u−, e+] = {0}.

(4) [u+, e0] = [u+, e−] = {0}.
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Proof. (1) We have already proved orthogonality so we are are just left to prove
that they are ideals.

[u±, u] = [[e±, e±], u]

Jacobi
= −[[e±, u], e±]− [[u, e±], e±]

e± u-inv.
⊂ [e±, e±]

= u± .

Let then X ∈ u0 ⊥ (u+ ⊕ u−), Z ∈ u. We show

[Z,X] ⊥ (u+ ⊕ u−)

that is, ∀Y ∈ u+ ⊕ u− we have

Bg([Z,X], Y ) = −Bg(X, [Z, Y ]︸ ︷︷ ︸
∈u+⊕u−

) = 0

(2) Let Z ∈ u0, X, Y ∈ e±. Then

Bg([Z,X], Y ) = Bg(Z, [X, Y ]) = 0 ,

since [X, Y ] ∈ u± and u± is orthogonal to u0. Since [u0, e±] ⊂ e± and Bg

restricted to e± is non-degenerate, then [Z,X] = 0, that is [u0, e±] = {0}.

(3) & (4) Using the definition of u± and the Jacobi identity, we have

[u±, e0] = [[e±, e±], e0]

Jacobi
= [e±, [e±, e0]]

= {0},

because of Lemma II.31 (2). Likewise,

[u±, e∓] = [[e±, e±], e∓]

Jacobi
= [e±, [e±, e∓]]

= {0},

because of Lemma II.31 (3).

■
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Now it is clear that since

g = u⊕ e = (u0 ⊕ u+ ⊕ u−)⊕ (e0 ⊕ e+ ⊕ e−) ,

to find the g0, g+ and g− we have to rearrange the direct summands. It seems that
setting

g0 = u0 ⊕ e0 g+ = u+ ⊕ e+ g− = u− ⊕ e−

might be a good idea.

Corollary II.34

u+ ⊕ e+, u0 ⊕ e0 and u− ⊕ e− are pairwise orthogonal ideals in g with regard
to Bg.

Proof. u = u− ⊕ u0 ⊕ u+ and e = e− ⊕ e0 ⊕ e+ are both orthogonal with regard to
Bg so uε ⊕ eε are pairwise orthogonal.

We show that they are ideals.

• To see that u0 ⊕ e0 is an ideal, we only need to see what happens for [u0, e] as

[u0 ⊕ e0, u⊕ e] = [u0, u]︸ ︷︷ ︸
∈u0 by II.33

+[u0, e] + [e0, u] + [e0, e]︸ ︷︷ ︸
∈e0 by II.31

.

But by Lemma II.33
[u0, e] = [u0, e0]

and u (thus in particular u0) preserves the decomposition of e. Therefore

[u0, e0] ⊂ e0

and hence u0 ⊕ e0 is an ideal.

• To see that uε ⊕ eε is an ideal, note that

[uε ⊕ eε, u⊕ e] = [uε, u]︸ ︷︷ ︸
∈eε

+ [uε, e]︸ ︷︷ ︸
=[uε,eε]

+ [eε, u]︸ ︷︷ ︸
∈eε

+ [eε, e]︸ ︷︷ ︸
⊂[eε,eε]⊂uε

. ■

Summary We have for (g,Θ) an (effective) orthogonal symmetric Lie algebra the
decomposition

g = u⊕ e

= (u− ⊕ u0 ⊕ u+)⊕ (e− ⊕ e0 ⊕ e+)

= (u− ⊕ e−)︸ ︷︷ ︸
=g−

⊕ (u0 ⊕ e0)︸ ︷︷ ︸
=g0

⊕ (u+ ⊕ e+)︸ ︷︷ ︸
=g+

such that
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(1) g0, g+ and g− are pairwise orthogonal ideals in g, so that in particular their
Killing form is the restriction of the Killing form of g i.e. Bgε = Bg

∣∣
gε×gε

.

(2) (g,Θ) is effective and therefore Bg

∣∣
u×u

is negative definite. Thus

• As Bg

∣∣
e−×e−

is negative definite, Bg− is negative definite and g− is therefore

of compact type.

• As Bg

∣∣
e+×e+

is positive definite, Bg+ is non-degenerate and g+ is therefore

of non-compact type.

In both cases, g± is semisimple.

(3) We showed in Lemma II.31 (2) that e0 is an Abelian ideal. Moreover, since g±
are semisimple, the center z of g must be all contained in g0 and hence

z(g0) = z(g).

Thus
z(g0) ∩ u0 ⊂ z(g) ∩ u = 0

and hence we are left to observe that u0 is compactly embedded. But this is
true since u ⊂ g, u± ⊂ g± are all compactly embedded and g is the direct sum
of the ideals g0 ⊕ g+ ⊕ g−, (see [Hel01, Lemma V.1.6]). Hence (g0,Θ|g0) is an
effective orthogonal symmetric Lie algebra.

Remark. We were a bit sloppy in the last part of the proof, in that the decompo-
sition we proposed is valid only if e0 ̸= {0}. In fact, if e0 = {0}, then our proposed
g0 would be equal to u0. As a consequence, we would have that Θ = Id , which was
not allowed. We hence set if e0 = {0}:

g0 := {0} g− := u0 ⊕ u− ⊕ e− g+ := u+ ⊕ e+ if e− ̸= {0} ;
g0 := {0} g− := {0} g+ := u− ⊕ u+ ⊕ e+ if e− = {0} .

Remark. If (G,K) is a Riemannian symmetric pair, then we have an associated
orthogonal symmetric Lie algebra (g,Θ) with k compactly embedded. Since

z(g) ∩ k = Lie(Z(G) ∩K)

we note that (g,Θ) is effective if and only if Z(G) ∩K is discrete.

Definition: Effective Riemannian Symmetric Pairs

A Riemannian Symmetric Pair (G,K) is effective if Z(G) ∩K is discrete.
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Lemma II.35

Let M be a Riemannian symmetric space, G = Iso(M)◦, o ∈ M and
K = StabG(o). If N ◁ G is contained in K, N = {e} and in particular
the Riemannian symmetric pair (G,K) is effective.

Proof. If g∗o ∈M , then StabG(g∗o) = gKg−1. Since N ◁ G and N < K we have

N ⊂
⋂
g∈G

gKg−1 =
⋂
g∈G

StabG(g∗o) = {e}.

Since every subgroup of Z(G) is normal, (G,K) is effective. ■

Definition: Riemannian Symmetric Spaces of Compact, Non-
compact and Euclidean Type

• An effective Riemannian symmetric pair (G,K) is of compact, non-
compact or euclidean type if the corresponding orthogonal symmet-
ric Lie algebra is.

• A Riemannian symmetric space M is of compact, non-compact
or euclidean type if the corresponding Riemannian symmetric pair
(Iso(M)◦, StabIso(M)◦(o)) is.

Theorem II.36

If M is a simply connected Riemannian symmetric space, then M is a Rie-
mannian product

M =M− ×M0 ×M+

where

• M− is of compact type,

• M0 is of euclidean type and

• M+ is of non-compact type.

Proof. CHECK!! Write G = Iso(M)◦, o ∈ M , σ = sogso and Θ = deσ. Then (g,Θ)
is an orthogonal symmetric Lie algebra which can be decomposed as

g = g− ⊕ g0 ⊕ g+.

Let then Gε be the Lie subgroups of G corresponding to gε. Since the gε are ideals,
the Gε are normal subgroups and Gε ∩ Gη is discrete for ε ̸= η. We claim that
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[Gε, Gη] = 0 and that

φ : G− ×G0 ×G+ → G

(x, y, z) 7→ xyz

is a homomorphism. In fact, [Gε, Gη] ◁ Gε ∩Gη but [Gε, Gη] is connected and hence
trivial. Now we observe that if

deφ : g− ⊕ g0 ⊕ g+ → g

is an isomorphism, then
φ̃ : G̃− × G̃0 × G̃+ → G̃

is an isomorphism as well. Let p : G̃→ G be the projection. Then

G̃⧸(p−1(K))◦ →
G̃⧸p−1(K) =

G⧸K =M

as M is simply connected and thus p−1(K) < G̃ is connected.

k = Lie(p−1(K)) ⊂ g

and let kε be the subalgebras k = k− ⊕ k0 ⊕ k+ and Kε the corresponding subgroups
of G̃.

φ̃(K− ×K0 ×K+) = p−1(K)

and the Kε are closed, hence (G̃ε, Kε) are a Riemannian symmetric pair with regard
to the lift σ̃ of σ. Thus

φ̃ : G̃−⧸K−
× G̃0⧸K0

× G̃+⧸K+
→M

is a diffeomorphism. ■

II.9.2 Irreducible orthogonal Symmetric Lie Algebras

Definition: Reduced orthogonal symmetric Lie algebras

An orthogonal symmetric Lie algebra (g,Θ) is reduced if u does not contain
any non-zero ideals.

Remark. If n ⊂ g is an ideal, then n ⊂ u is trivial if and only if any connected
normal subgroup N ◁ G contained in K, N < K, is trivial.

In particular, reduced therefore implies that⋂
g∈G

gKg−1 =
⋂
g∈G

StabG(g∗o)



60 CHAPTER II. GENERALITIES ON GLOBALLY SYMMETRIC SPACES

can not be connected and is thus discrete. Also the action of G on G/K has discrete
kernel.

Hence, if (g,Θ) is reduced, it is also effective. In fact, z(g) ∩ u is a subalgebra
of z(g) and since the latter is Abelian it is actually an ideal in g contained in u. As
(g,Θ) is reduced, it must thus be trivial.

Definition: Irreducible orthogonal Symmetric Lie Algebra

Let (g,Θ) be an orthogonal symmetric Lie algebra (with decomposition g =
u⊕ e). We say that (g,Θ) is irreducible if

(1) g is semisimple and (g,Θ) is reduced, and

(2) adg(u) acts irreducibly on e.

Theorem II.37

A reduced orthogonal symmetric Lie algebra (g,Θ) is the direct sum of irre-
ducible orthogonal symmetric Lie algebras and the decomposition is unique.

Theorem II.38

Let V be a real vector space and K < GL(V ) compact. Then there exists a
decomposition V =

⊕
i Vi into K-invariant irreducible subspaces.

Proof of Theorem II.38. Let ⟨·, ·⟩ be a K-invariant inner product on V . If V is
irreducible, we are done. If not, take a K-invariant subspace and note that W⊥ is
also invariant. ■

Sketch of Proof of Theorem II.37. Let u, e be as before and ⟨·, ·⟩ an inner product
on e that is u-invariant. Let A ∈ End(e) be symmetric such that

Bg(X, Y ) = ⟨AX, Y ⟩ ∀X, Y ∈ e.

Let then e =
⊕r

i=1 qi be the decomposition corresponding to the distinct eigen-
values c0 = 0, c1, ..., cr ̸= 0 with ci ̸= cj for 1 ≤ i ̸= j ≤ r. This decomposition is
also u-invariant. By the previous theorem, we can decompose the qi into u-invariant
irreducible subspaces

qi =

ri⊕
j=1

pij

The pij play the role of p in the Cartan decomposition.
Define

gij := [pij, pij] + pij
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and show that

(1) The gij are Θ-invariant ideals in g,

(2) Bgij = Bg

∣∣
gij×gij

is non-degenerate and

(3) m :=
⊕

gij is a semisimple Θ-invariant ideal and g0 = Centrg(m). This is also
Θ-invariant and (g0,Θ

∣∣
g0
) is a euclidean orthogonal symmetric Lie algebra. ■

Definition: Reduced/Irreducible Riemannian Symmetric Spaces

• A Riemannian symmetric pair (G,K) is reduced or irreducible if the
corresponding orthogonal symmetric Lie algebra is.

• A Riemannian symmetric space M is reduced or irreducible if the
corresponding Riemannian symmetric pair (Iso(M)◦, StabIso(M)◦(o)) is.

Remark. A Riemannian symmetric space is irreducible if Lie(Iso(M)◦) is semisim-
ple, K acts irreducibly via AdG on p, where g = k⊕ p is the Cartan decomposition.

Corollary II.39

A Riemannian symmetric space M is isometric to the Riemannian product
M =M0 × ...×Mn where

• Mo = Ek and

• Mi, 1 ≤ i ≤ n are irreducible symmetric spaces of compact or non-
compact type.

Remark. M being irreducible does not imply that Iso(M)◦ is simple.
For example, let U be a compact Lie group and consider the Riemannian sym-

metric pair (U × U,∆U) with ∆(U) = {(g, g) ∈ U × U}. Define then

Θ(X, Y ) = (Y,X)

and note that this implies

k = {(X,X) : X ∈ u}
p = {(Y,−Y ) : Y ∈ u}

with the adg(k)-action

(adg(X,X))(Y,−Y ) = [(X,X), (Y,−Y )] = ([X, Y ],−[X, Y ]).

If U is simple, then U × U/∆(U) is an irreducible symmetric space.
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Proposition II.40

Let (G,K) be an irreducible Riemannian symmetric pair with Cartan de-
composition g = k ⊕ p and let Bg be the Killing form. Then there exist a
(up to scalars) unique G-invariant Riemannian metric on G/K and on of the
following holds:

(1) Bg

∣∣
p×p

≫ 0 is positive definite, G/K is of non-compact type and the
Riemannian metric is Bg.

(2) Bg

∣∣
p×p

≪ 0 is negative definite, G/K is of compact type and the Rieman-
nian metric is −Bg.

Proof. Take an AdG(K)-invariant inner product ⟨·, ·⟩ on p and as previously

Bg(X, Y ) = ⟨AX, Y ⟩ ∀X, Y ∈ p.

Since AdG(K) acts irreducibly on p we must have A = λId p for some 0 ̸= λ ∈ R.
Whether Bg is positive or negative definite then depends on the sign of λ. ■

II.10 From orthogonal Symmetric Lie Algebras to

Riemannian Symmetric Spaces

In this subsection we want to apply the techniques developped so far to see how
one can get from an orthogonal symmetric Lie algebra to a Riemannian symmetric
space. The first step is to g(o) from a reduced semisimple orthogonal symmetric Lie
algebra to a reduced semisimple Riemannian symmetric pair.

Theorem II.41

Let (g,Θ) be a reduced semisimple orthogonal symmetric Lie algebra. Set
G := Aut(g)◦ and define the involution via

σ : G→ G

α 7→ ΘαΘ−1.

Let K < G such that
(
Gσ
)◦
< K < Gσ. Then (G,K) is a Riemannian sym-

metric pair whose associated orthogonal symmetric Lie algebra is isomorphic
to (g,Θ). Moreover, Gσ is compact, Z(G) = {e} and G acts faithfully on
G/K.
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Proof. Using Theorem II.37 we can write

(g,Θ) ∼=
k∏

i=1

(gi,Θi)

as a product of irreducible components. It is left as an exercise to show that under
this isomorphism

Aut(g)◦
∼→

k∏
i=1

(
Aut(gi)

)◦
Gσ ∼→

k∏
i=1

Gσi

and hence we may assume that (g,Θ) is irreducible.
Recall that Θ ∈ Aut(g) is an involution. Let g = k⊕ p be the Cartan decompo-

sition. We define a scalar product
⟨·, ·⟩

on g as follows:

(1) If g is of compact type we set ⟨X, Y ⟩ = −Bg(X, Y ) for X, Y ∈ g.

(2) If g is of non-compact type we set

⟨X, Y ⟩ = −Bg(X,Θ(Y )) for X, Y ∈ g.

As g is semisimple it follows from Proposition II.29 that

adg : g → Derg ⊂ Lie(G)

is an isomorphism. Moreover, Gσ = {α ∈ G : αΘ = Θα} is obviously a closed
subgroup of G.

We claim that Gσ is compact. Indeed, Gσ preserves the scalar product ⟨·, ·⟩.
This is clear in the case when g is of compact type, because Aut(g) preserves the
Killing form Bg according to the reminder (1) at the beginning of section II.9.1.

If g is of non-compact type, then for all α ∈ Gσ and all X, Y ∈ g

⟨αX,αY ⟩ = −Bg(αX,ΘαY ) = −Bg(αX,αΘY ) = −Bg(X,ΘY ) = ⟨X, Y ⟩.

We next compute the Lie algebra of Gσ using again Proposition II.29. We have

Lie(Gσ) = {D ∈ Der(g) : DΘ = ΘD}
= {adg(X) : Θ adg(X) = adg(X)Θ}
= {adg(X) : adg(ΘX) = adg(X)} = adg k,
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hence Lie(K) = adg k. So adg establishes an isomorphism between (g,Θ) and the
orthogonal symmetric Lie algebra associated to the Riemannian symmetric pair
(G,K).

In order to prove the last assertion we notice that (G,K) is reduced, so the kernel
N of the G-action on G/K is discrete. Since G is connected and N is a discrete
normal subgroup we obtain N < Z(G).

We finally take α ∈ Z(G) arbitrary. Then for all β ∈ Aut(g)◦ we have αβ = βα.
Passing to the Lie algebra this implies

α adg(X) = adg(X)α for all X ∈ g

or equivalently

adg(αX) = adg(X) for all X ∈ g,

which shows that α = Id g, hence N = Z(G) = {e}. ■

Given a Riemannian symmetric space M = G/K with an effective G-action we
obviously have G < Iso(M)◦. We now address the question when we have equality.
Clearly this is not always the case as the example of G = Rn, σ(v) = −v for v ∈ Rn

shows: M = En, but Iso(M)◦ = Rn ⋉ SO(n). But these are essentially the only
examples.

Theorem II.42

Let (G,K) be a Riemannian symmetric pair and assume that G is semisimple
and acts faithfully on M = G/K. Then G = Iso(M)◦ and K = StabG(o),
where o = eK.

Proof. Let G0 = Iso(M)◦ and τ : G→ G0 given by

τ(g)hK := ghK.

Then τ is a smooth injective homomorphism. Let σ : G→ G be the involution such
that (Gσ)◦ < K < Gσ and denote π : G ↠ M = G/K the natural projection. If
so : M →M denotes the geodesic symmetry at o = eK, then

soπ = πso.

Define

σ0 : G0 → G0

α 7→ soαs
−1
o
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and K0 = StabG0(o). Then (G0, K0) is a Riemannian symmetric pair and it follows
from soπ = πso that the diagram

G G

G0 G0

σ

τ τ

σ0

commutes. Let g = k⊕ p be the Cartan decomposition of the orthogonal symmetric
Lie algebra (g, Deσ) and g0 = k0⊕p0 the one of the orthogonal symmetric Lie algebra
(g0, Deσ0). Then it follows from the commuting diagram above that

Deτ(p) ⊂ p0, Deτ(k) ⊂ k0.

Since M = G/K = G0/K0 we have dim p = dim p0 and hence Deτ(p) = p0 by
injectivity of Deτ .

Next we notice that the inclusion

[p, p] ⊂ k

from Proposition II.21 is true for any reduced semisimple orthogonal symmetric Lie
algebra. Indeed, one can easily verify that p + [p, p] is an ideal in g and that its
orthogonal complement with respect to Bg is contained in the orthogonal comple-
ment of p which is equal to g. Hence this orthogonal complement vanishes and we
get g = p + [p, p]. From [p, p] ⊂ k we therefore get [p, p] = k. Combining this with
Deτ(p) = p0 we conclude

Deτ(k) = [p0, p0].

Next we observe that (g0, Deσ0) is a reduced and hence effective orthogonal sym-
metric Lie algebra and that the null space e0 of the Killing form of g0 is contained
in p0 and an Abelian ideal in g0. This gives the inclusion

e0 ⊂ p0 = Deτ(p) ⊂ Deτ(g) = g′,

so e0 is an Abelian ideal in Deτ(g) as well. But as g ∼= Deτ(g) is semisimple this
implies e0 = 0. So (g0, Deσ0) is a reduced semisimple orthogonal symmetric Lie
algebra, hence in particular [p0, p0] = k0 which implies

Deτ(k) = k0.

So τ induces an isomorphism between the two orthogonal symmetric Lie algebras
and is therefore a Lie group isomorphism. ■
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II.11 Curvature

Definition: (Sectional) Curvature

Let M be a Riemannian manifold with Levi-Civita connection ∇. The cur-
vature of M is a multilinear map

R : Vect(M)× Vect(M)× Vect(M) → Vect(M)

where Vect(M) is a C∞-module defined as

R(X, Y )Z := ∇X(∇YZ)−∇Y (∇XZ)−∇[X,Y ]Z

Remark. For p ∈M (R(X, Y )Z)p depends only on Xp, Yp, Zp.

From R one can define the sectional curvature: Let p ∈ M and Gr2(TpM)
be the Grassmannian of 2-planes in TpM . Define then

κp : Gr2(TpM) → R
P 7→ ⟨R(u, v)u, v⟩

where {u, v} is an orthonormal basis of P .

Theorem II.43

Let (G,K) be a Riemannian symmetric pair with associated Riemannian sym-
metric space M and a corresponding G-invariant Riemannian metric.

(1) If (G,K) is of compact type, then κp ≥ 0 for all p ∈M .

(2) If (G,K) is of non-compact type, then κp ≤ 0 for all p ∈M .

(3) If (G,K) is of euclidean type, then κp = 0 for all p ∈M .

The proof of this relies on the following result:

Theorem II.44

Let (G,K) be a symmetric pair a and let R be the curvature tensor. Then at
the point o ∈ G/K

Ro(X̄1, X̄2)X̄3 = −[[X̄1, X̄2], X̄3]

where X̄i = deπXi, for Xi ∈ p, i = 1, 2, 3.
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Proof of Theorem II.43. Take X1, X2 ∈ p. Then

Bg(−[[X1, X2], X1], X2) = Bg([X1, X2], [X1, X2])

We restrict to the first case and note that if (G,K) is of compact type, then we take
−Bg as the Riemannian metric at o after p ∼= ToM .

Let X1, X2 ∈ p such that X̄1, X̄2 ∈ ToM are orthonormal. Then

κo(Span(X̄1, X̄2)) = −⟨R(X̄1, X̄2)X̄1, X̄2⟩ (II.18)
II.44
= −⟨[[X1, X2], X1], X̄2⟩ (II.19)

= −Bg([[X1, X2], X1], X2) (II.20)

= Bg([X1, X2], [X1, X2]) (II.21)

= ⟨[X1, X2], [X1, X2]⟩ = ∥[X1, X2]∥2 ≥ 0. ■ (II.22)

II.12 Duality

There is a remarkable and important duality between compact and non-compact
orthogonal symmetric Lie algebras which is a special case of a general construction
we will outline now. First we need some preliminaries on complexifications of real
vector spaces and real Lie algebras.

Definition: Complex structure

Let V be a real vector space and v a real Lie algebra. A complex structure
on V is given by

J ∈ End(V ) such that J2 = −Id .

A complex structure on v is a complex structure J ∈ End(v) of v as a
vector space which in addition satisies

[X, JY ] = J [X, Y ].

Any real vector space V with a complex structure J can be turned into a complex
vector space, denoted Ṽ , by setting

(α + iβ)v := αv + βJ(v)

Conversely, any complex vector spaceW can be considered as a real vector space,
denoted WR, with a complex structure J ∈ End(WR) given by J(w) = i · w. Then
obviously W̃R = W .
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If J ∈ End(v) is a complex structure on v, then it follows that [·, ·] : ṽ × ṽ → ṽ
is C-bilinear and ṽ is a C-Lie algebra.

In general, real vector spaces do not always admit a complex structure. However,
for any real vector space V one can define an endomorphism J ∈ End(V × V ) with
J2 = −Id by

J : V × V−→V × V

(v, w) 7→ (−w, v).

Definition: Complexification

The complexification of V is V C := Ṽ × V . The complex conjugation
on V C is the R-linear automorphism τ ∈ End(V × V ) defined by

τ(v, w) = (v,−w).

V embeds into V C as a real vector space by

V ↪→ V C

v 7→ (v, 0)

Notice that the map

V C ∼=−→ V + iV

(v, w) 7→ v + iw

is C-linear and bijective, hence V C can be identified with V + iV . Then complex
conjugation is defined as usual, namely by

τ(v + iw) = v − iw.

Remark. If v is a real Lie algebra, the Lie bracket on v extends uniquely to a
C-linear Lie bracket on vC.

Example. Let g = sl(n,R). Then sl(n,R)C = sl(n,C). In fact,

A ∈ sl(n,C) ⇐⇒ tr(A) = 0

⇐⇒ Re tr(A) = Im tr(A) = 0

⇐⇒ tr Re(A) = tr Im(A) = 0

⇐⇒ A = A1 + iA2, Ai ∈ sl(n,R)

and thus
sl(n,C) = sl(n,R) + isl(n,R).
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Example. Let g = su(n,C) = {X ∈ sl(n,C) : X∗ + X = 0, where X∗ = X
t}.

Observe that su(n,C) is a real Lie algebra. We claim that su(n,C)C = sl(n,C). In
fact,

isu(n,C) = {iX ∈ sl(n,C) : X∗ +X = 0}
= {X ∈ sl(n,C) : X∗ = X} .

But for any A ∈ sl(n,C) we can write

A =
A− A∗

2︸ ︷︷ ︸
∈su(n,C)

+
A+ A∗

2︸ ︷︷ ︸
∈isu(n,C)

,

so sl(n,C) ⊂ su(n,C)⊕ isu(n,C) and a count of dimensions gives equality.

Example. Let g = o(p, q). Since any two non-degenerate quadratic forms over C
are equivalent, we have o(p, q)C = o(p+ q,C). In particular o(n,R)C = o(n,C) and
o(1, n− 1)C = o(n,C).

Definition: Complexificaton of endomorphisms

If V is a real vector space and T ∈ End(V ), the map

V C = V + iV −→ V + iV

v + iw 7→ Tv + iTw

is an endomorphism of the C-vector space V C.

Notice that if T1, T2, T ∈ End(V ), then

(T1 ◦ T2)C = TC
1 ◦ TC

2 and trV (T ) = trV C(TC).

Moreover, if A ∈ End(V C), then

tr(V C)R A = 2Re
(
trV C A

)
.

Definition: Real and Compact Form

• If h is a complex Lie algebra, a real form of h is a real Lie algebra g
such that gC = h.

• If g is semisimple and Bg is negative definite, then g is called a compact
form of gC = h. By abuse of notation, if h is a real Lie algebra, by a
compact form we mean a compact form of hC.
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Theorem II.45: [Hel01, Theorem III.6.3]

Every semisimple Lie algebra has a compact form.

Lemma II.46

Let g0 be a real Lie algebra and g := gC0 its complexification. Then

(1) Bg0(X, Y ) = Bg(X, Y ) for all X, Y ∈ g.

(2) BgR(X, Y ) = 2Re(Bg(X, Y ) for all X, Y ∈ g.

(3) g0 semisimple ⇐⇒ g semisimple ⇐⇒ gR semisimple.

This lemma follows from the fact that the map

e : gl(g0) −→ gl(g)

T 7→ TC

is a homomorphism of real Lie algebras and that the following diagram commutes:

g0 gl(g0)

g gl(g)

adg0

e

adg

Back to orthogonal symmetric Lie algebras. Let (g0,Θ0) be an orthogonal
symmetric Lie algebra with Cartan decomposition g0 = k⊕ p. Let g := gC0 , Θ := ΘC

0

be the complexifications, and τ : g → g the complex conjugation. Then

k, ik, p, ip

are R-subspaces of gR with the following bracket relations:

[k, k] ⊂ k, [k, ip] ⊂ ip and [ip, ip] = [p, p] ⊂ k.

Thus g∗ := k+ ip is a Lie subalgebra of gR with bracket coming from g

[X + iY, Z + iT ] = [X,Z]− [Y, T ] + i([X,T ] + [Y, Z]) .

The conjugation τ : g → g restricts to an involution Θ∗ := τ
∣∣
g∗

∈ End(g∗).
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Definition: Isomorphic orthogonal Symmetric Lie Algebras

Two orthogonal symmetric Lie algebras (g1,Θ1) and (g2,Θ2) are isomorphic
(g1,Θ1) ∼= (g2,Θ2) if there exists a Lie algebra isomorphism φ : g1 → g2 such
that

Θ2 ◦ φ = φ ◦Θ1

Proposition II.47

Let (g0,Θ0) be an orthogonal symmetric Lie algebra with g0 semisimple. Then

(1) The pair (g∗,Θ∗) with Θ∗ := τ
∣∣
g∗

is an orthogonal symmetric Lie algebra,

(2) (g∗)C = gC0 , (Θ
∗)C = ΘC

0 ,

(3) (g∗,Θ∗) is effective if and only if (g0,Θ0) is effective,

(4) (g∗,Θ∗) is reduced if and only if (g0,Θ0) is reduced,

(5) The pair (g0,Θ0) is of non-compact type (resp. compact type) if and only
if (g∗,Θ∗) is of compact type (resp. non-compact type),

(6) (g1,Θ1) ∼= (g2,Θ2) if and only if (g∗1,Θ
∗
1)

∼= (g∗2,Θ
∗
2) and

(7) ((g∗)∗, (Θ∗)∗) = (g0,Θ0).

Sketch of the proof. (1) Since τ ∈ Aut(gR), k is the part of the algebra fixed by
Θ∗ ∈ Aut(g∗). So we only need to show that k is compactly embedded in g∗.
Consider the R-vector space isomorphism

ϕ : g0 → g∗

X + Y 7→ X + iY

which induces the Lie group isomorphism

Φ: GL(g0) → GL(g∗)

A 7→ ϕAϕ−1.

Notice that for all Z ∈ k we have

ϕ ◦ adg0Z = adg∗Z ◦ ϕ.
Since k < g0 is compactly embedded, there exists U < GL(g0) compact and
connected such that Lie(U) = adg0(k). Using Φ and its derivative

dIdΦ: gl(g0) → gl(g∗)

B 7→ ϕBϕ−1
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we get dIdΦ
(
adg0k

)
= adg∗k, hence adg∗(k) = Lie

(
Φ(U)

)
and Φ(U) < GL(g∗) is

a compact connected Lie group.

(2) The verfication is left to the reader.

(3) This follows from z(g0) ∩ k = z(g∗) ∩ k.

(4) We recall that (g0,Θ0) is reduced if and only if any ideal n < g0 that is contained
in k is trivial. Moreover, an ideal n < g0 is contained in k if and only if n < k is
an ideal and if [n, p] = 0.

Now n < k is an ideal with [n, p] = 0 if and only if [n, ip] = 0, so n < g0 is
contained in k if and only if n < g∗ is contained in k. Hence (g0,Θ0) is reduced
if and only if (g∗,Θ∗) is reduced.

(5) Since (g0,Θ0) is effective semisimple, so is (g∗,Θ∗) according to Lemma II.46
and (3) above. Lemma II.46 further implies that for any X, Y ∈ p

Bg0(X, Y ) = Bg(X, Y )

= −Bg(iX, iY )

= −Bg∗(iX, iY )

since (g∗)C ∼= g := (g0)
C.

(6) Any isomorphism of real Lie algebras extends to an isomorphism of the com-
plexifications.

(7) Obviously we have (g∗)∗ = g0. The proof of (Θ
∗)∗ = Θ0 is left to the reader. ■

Definition: Dual

(g∗,Θ∗) is called the dual of (g0,Θ0).

Example. (sl(n,R),Θ) with Θ(X) = −X t. We saw already that

sl(n,R)C = sl(n,C).

Now we claim that the dual of (sl(n,R),Θ) is (su(n,C),Θ∗).

In fact, if sl(n,R) = k⊕ p with

k = {X ∈ sl(n,R) : X +X t = 0}
p = {X ∈ sl(n,R) : X = X t},
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then

g∗ = k+ ip

= {Z ∈ sl(n,C) : Z = X + iY with X +X t = 0 and Y = Y t}
= {Z ∈ sl(n,C) : Z + Z∗ = 0}
= su(n,C)

The corresponding symmetric spaces are

M = SL(n,R)⧸SO(n), M∗ = SU(n)⧸SO(n)

where M∗ is compact.

Example. Let g = so(n) = {X ∈ gl(n,R) : X +X t = 0} and let p, q ∈ N ∪ {0} be
such that p+ q = n. Define Θpq as

Θpq : gl(p+ q,C) → gl(p+ q,C)
X 7→ IpqXIpq

where Ipq =

(
−Ip 0
0 Iq

)
.

It is easy to check that Θpq(g) = g and that Θ2
pq = Id . We write g in block form

g =

{(
A B

−Bt D

)
: A+ At = 0, D +Dt = 0, B ∈Mp,q(R)

}
and note that in this form

Θ(X) = Θ

(
A B

−Bt D

)
=

(
A −B
Bt D

)
.

It is then easy to see that the Cartan decomposition is given by

k =

{
X =

(
A 0
0 D

)
∈ so(p+ q) : A ∈ so(p), D ∈ so(q)

}
p =

{
X =

(
0 B
Bt 0

)
∈ so(p+ q) : B ∈Mp,q(R)

}
.

Now we observe that

g∗ = k+ ip

=

{(
A iB
iBt D

)
: A+ At = 0 = D +Dt, B ∈Mp,q(R)

}
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and define

σ : gl(n,C) → gl(n,C)

Y 7→
(
−iIp 0
0 Iq

)
Y

(
−iIp 0
0 Iq

)
such that

σ

(
A iB
iBt D

)
=

(
A B
Bt D

)
.

This shows that σ is an isomorphism g∗
∼=−→ so(p, q) where

so(p, q) =

{(
A B
Bt D

)
: A+ At = 0 = D +Dt, B ∈Mp,q(R)

}
.

Finally, the involution is given by Θ∗ = τ
∣∣
g∗

with τ(X + iY ) = X − iY , that is

Θ∗
(
A B
Bt D

)
=

(
A −B

−Bt D

)
.

In conclusion, (so(p+ q,R),Θ) and (so(p, q),Θ∗) are dual orthogonal symmetric Lie
algebras. The corresponding Riemannian symmetric spaces are

M = SO(p+ q,R)⧸SO(p)× SO(q), M∗ = SO(p, q)⧸SO(p)× SO(q)

where M is compact and M∗ is not.

We will next show how this duality can be realised at the level of Riemannian
symmetric pairs. To this end we will use the construction in Theorem II.41. Let
(g0,Θ0) be a reduced semisimple orthogonal symmetric Lie algebra, g := (g0)

C and
τ : g → g the complex conjugation with respect to g0. Recall that g∗ = k ⊕ ip and
Θ∗ = τ

∣∣
g∗
. Then (g∗)C = g and (Θ∗)C = ΘC

0 .

Consider

e0 : Aut(g0) → Aut(g)

α 7→ αC

which is an injective Lie group morphism satisfying

e0(Θ0 ◦ α ◦Θ−1
0 ) = (Θ0)

C ◦ αC ◦ (ΘC
0 )

−1.

Denote σ0 the restriction of the conjugation by ΘC
0 to e0

(
Aut(g0)

)
< Aut(g). Anal-

ogously we consider

e∗ : Aut(g∗) → Aut(g)

β 7→ βC



II.12. DUALITY 75

which is an injective Lie group morphism satisfying

e∗(Θ∗ ◦ β ◦ (Θ∗)−1) = (Θ∗)C ◦ βC ◦
(
(Θ∗)C

)−1
,

and denote σ∗ the restriction of the conjugation by (Θ∗)C to e∗
(
Aut(g0)

)
< Aut(g).

Proposition II.48

The groups G0 = e0
(
Aut(g0)

◦) and G∗ = e∗
(
Aut(g∗)◦

)
are closed connected

semisimple. Moreover, σ0 defines an involution on G0 and σ
∗ an involution on

G∗. The group K := G0 ∩G∗ is compact and satisfies

(Gσ0
0 )◦ ⊂ K ⊂ Gσ0

0 ,
(
(G∗)σ

∗)◦ ⊂ K ⊂ (G∗)σ
∗
.

Moreover, the orthogonal symmetric Lie algebra associated to (G0, K) is iso-
morphic to (g0,Θ0) and the orthogonal symmetric Lie algebra associated to
(G∗, K) is isomorphic to (g∗,Θ∗).

Proof. It will turn out to be essential to understand the relation between τ , ΘC
0 ,

(Θ∗)C and τ ∗, where τ ∗ denotes the complex conjugation of g = g∗ + ig∗ with
respect to g∗. All of these four maps are automorphisms of gR, that is g seen as a
real Lie algebra. It will be convenient to present the action of these automorphisms
in a table:

k ik p ip
ΘC

0 Id Id −Id −Id
(Θ∗)C Id Id −Id −Id
τ Id −Id Id −Id
τ ∗ Id −Id −Id Id

All these automorphisms have order two, commute pairwise and satisfy

ΘC
0 ◦ τ = τ ∗, (Θ∗)C ◦ τ ∗ = τ.

Hence if ⟨α, β⟩ denotes the subgroup of Aut(gR) generated by two elements α, β we
have

⟨ΘC
0 , τ⟩ = ⟨(Θ∗)C, τ ∗⟩ = ⟨τ, τ ∗⟩.

Let us now define the following automorphisms of the Lie group Aut(gR): For α ∈
Aut(gR) set

t(α) = τατ−1, t∗(α) = τ ∗α(τ ∗)−1, r(α) = ΘC
0α(Θ

C
0 )

−1 = (Θ∗)Cα
(
(Θ∗)C

)−1
.

Hence the set

Aut(g) = {α ∈ Aut(gR) : α(iZ) = iα(Z) ∀ Z ∈ g}
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is a closed subgroup of Aut(gR) which is invariant by t: Indeed, for all Z ∈ g we
have

τ(iZ) = −iτ(Z)

and hence if α ∈ Aut(g)

(τατ−1)(iZ) = (τα)
(
−iτ−1(Z)

)
= τ
(
−iατ−1(Z)

)
= iτατ−1(Z).

We further claim that the image of e0 : Aut(g0) → Aut(g) coincides with
(
Aut g

)t
,

the subgroup of Aut g fixed by t. The proof is left as an easy verification. Thus the
image of e0 is closed and hence

e0 : Aut g0 →
(
Aut g

)t
is a Lie group isomorphism which implies that

G0 = e0
(
(Aut g0)

◦) = ((Aut g)t)◦
is closed connected semisimple.

The same argument applies to G∗.
Now we have the following relations in Aut(Aut g∗): t, t∗,r are of order two and

commute pairwise,
rt = t∗, rt∗ = t

and
⟨r, t⟩ = ⟨r, t∗⟩ = ⟨t, t∗⟩

as subgroups of Aut(Aut g∗).
Recall that σ0 = r

∣∣
(Aut g)t

, σ∗ = r
∣∣
(Aut g)t∗

. Moreover,

G0 ∩G∗ =
(
(Aut g)t

)◦ ∩ ((Aut g)t∗)◦
is open in

(Aut g)t ∩ (Aut g)t
∗
= (Aut g)⟨t,t

∗⟩ = (Aut g)⟨t,r⟩ = (Aut g)⟨t
∗,r⟩.

Thus G0 ∩G∗ is open in
(
(Aut g)t

)r
, but it is also contained in G0 =

(
(Aut g)t

)◦
,

hence it is open in (
(Aut g)t

)◦ ∩ ((Aut g)t)r = Gσ
0 .

We conclude (
Gσ

0

)◦ ⊂ G0 ∩G∗ ⊂ Gσ
0 .

The compactness then follows from the compactness of Gσ
0 which is a direct conse-

quence of Marcs Theorem IV.15. ■
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Definition: Compact dual

Let (g0,Θ0) be a reduced orthogonal symmetric Lie algebra of non-compact
type and (G0, K), (G∗, K) as above. Then we call M∗ = G∗/K the compact
dual of the symmetric space M = G0/K of non-compact type. Observe here
that K is connected and G0 = Iso(M)◦, G∗ = Iso(M∗)◦.

The following remarkable Theorem is the starting point of many interesting
developments.

Theorem II.49

Let M = G0/K be a Riemannian symmetric space of non-compact type with
compact dual M∗ = G∗/K. Then there is a canonical isomorphism

Ωk(M)G0 ∼= Hk(M∗,R)

where

• Ωk(M)G0 is the space of G0-invariant smooth differential k-forms on M
and

• Hk(M∗,R) is the singular cohomology of M∗ with R-coefficients.

Before we give a proof of this theorem we will need some notation and a few
lemmata.

Notation. If V is a real vector space, we write Altk(V ) for the space of alternating
forms V k → R in k variables.

Lemma II.50

Let M be a Riemannian symmetric space, G = Iso(M)◦, o ∈ M and
K = StabG(o). As π : G → G/K is the projection, deπ : p → ToM is an
isomorphism of vector spaces that commutes with the action of k on p via
adg(k) and on ToM via the differential of left translation. Then

Ωk(M)G → Altk(p)
adg(k)

is an isomorphism.

Sketch of Proof. The isomorphism is obtained by restricting ω ∈ Ωk(M)G to o ∈M ,
ω0 ∈ Altk(ToM), and pulling it back: (deπ)

∗(ωo) ∈ Altk(p). ■



78 CHAPTER II. GENERALITIES ON GLOBALLY SYMMETRIC SPACES

Lemma II.51: (Cartan)

Let M be a Riemannian symmetric space , G = Iso(M)◦ and ω ∈ Ωk(M)G.
Then

dω = 0.

Proof. Take o ∈ M , so ∈ G the geodesic symmetry at o and let ω ∈ Ω(M)G. Since
for all g ∈ G we have sogso ∈ G we get

ω = (sogso)
∗ω

= s∗og
∗s∗oω,

hence from s∗o =
(
s∗o
)−1

s∗oω = g∗s∗oω.

This shows that s∗oω ∈ Ωk(M)G. Moreover, so
∣∣
ToM

= −Id and thus

(s∗oω)o = (−1)kωo

and by G-invariance

(s∗oω)x = (−1)kωx for all x ∈M.

So the forms (−1)kω and s∗oω coincide, and applying d we get

(−1)kdω = d(s∗oω) = s∗o(dω).

But since dω is an invariant (k+1)-form we have s∗o(dω) = (−1)k+1dω which implies
dω = −dω and hence dω = 0. ■

Lemma II.52

Let U be a compact connected Lie group acting smoothly on a smooth mani-
fold X. The inclusion of complexes

Ωk(X)U ↪→ Ωk(X)

induces an isomorphism in cohomology

Ωk(X)U ∼= Hk
dR(X).

Proof. As U is compact, there is a normalized Haar measure dµ on U .
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Injectivity: Let α ∈ Ωk(X)U and assume that α is exact in Ωk(X), that is α = dβ

for some β ∈ Ωk−1(X). Since the U -action commutes with d we get

α = u∗α

= u∗dβ

= d(u∗β)

for all u ∈ U , hence

α =

∫
U

u∗αdµ(u)

=

∫
U

d(u∗β) dµ(u)

= d

(∫
U

u∗βdµ(u)

)
︸ ︷︷ ︸

∈Ωk−1(X)U

.

Surjectivity: Let α ∈ Ωk(U) such that dα = 0. As U is connecte, every u ∈ U
is diffeotopic to the identity Id ∈ U . Thus α and u∗α represent the same class in
H∗

dR(X), and for every C1-cycle z ∈ Hk(X;R) we have∫
z

α =

∫
z

u∗α for any u ∈ U.

Using Fubini we conclude ∫
z

α =

∫
U

(∫
z

(u∗α)

)
dµ(u)

=

∫
z

∫
U

u∗α dµ(u),

which shows that∫
z

(
α−

∫
U

u∗α dµ(u)

)
= 0 for all z ∈ Hk(X;R).

De Rham’s Theorem now implies that α and
∫
U
u∗α dµ(u) represent the same co-

homology class. In particular,

α =

∫
U

u∗α dµ(u)

is U -invariant which proves surjectivity. ■
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Proof of Theorem II.49. Denote G0 = Iso(M)◦, G∗ = Iso(M∗)◦ and o = eK ∈
M ∩M∗. Then according to Lemma II.50

Ωk(M)G0 ∼= Altk(p)
adg(k)

Now

p → ip

X 7→ iX

is an Ad(K)-equivariant isomorphism of real vector spaces, hence

Altk(p)
adg(k) ∼= Altk(ip)

adg(k)

and the latter is isomorphic to Ωk(M∗)G
∗

again by Lemma II.50. Since G∗ is a
compact connected Lie group, the inclusion of complexes

Ωk(M∗)G
∗ → Ωk(M∗)

induces an isomorphism in cohomology Ωk(M∗)G
∗ ∼= Hk

dR(M
∗,R) according to

Lemma II.52. But by Lemma II.51 (Ωk(M∗)G
∗
, d) is equal to its cohomology and

hence
Ωk(M∗)G

∗ ∼= Hk
dR(M

∗,R),

the latter being De Rham cohomology which itself is isomorphic to Hk(M∗,R) by
De Rham’s Theorem. ■
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Chapter III

Symmetric Spaces of
Non-Compact Type

III.1 Symmetric spaces are CAT(0)

Definition: Geodesic and Comparison Triangle

• Ametric space (X, dX) is called geodesic if for every two points x, y ∈ X
there is a continuous path

γ : [0, dX(x, y)] → X

from x to y and such that l(γ) = dX(x, y), where

ℓ(γ) := sup

{
n−1∑
j=0

dX(γ(tj), γ(tj+1) : 0 = t0 < · · · < tn = dX(x, y)

}

and the supremum is taken over all partitions of [0, dX(x, y)].

• A geodesic triangle ∆(p, q, r) in a geodesic metric space X consists of
three points p, q, r ∈ X and geodesic segments [p, q], [q, r] and [p, r] that
join them and whose lengths is the distance between the endpointsa.

• Given ∆(p, q, r), a comparison triangle is a triangle ∆ = ∆(p, q, r) in
E2 whose sides are geodesic segments of the same length as the sides in
∆.

• Given a point x ∈ [p, q], a comparison point for it is a point x ∈ [p, q]
such that

dX(p, x) = dE2(p, x).

aThe notation ∆(p, q, r), that is the lack of indication of the geodesic segments, will soon
be justified (see the Remark before Proposition III.1.
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p

b a
γ

c
q r

γ

βα

p

γ

b a

cq

α

r

β

It is easy to see that comparison triangles always exist and are unique up to
isometries.

Definition: CAT(0)

A geodesic metric space isCAT(0) if for every geodesic triangle ∆(p, q, r) with
comparison triangle ∆(p, q, r) and points x, y ∈ ∆(p, q, r) with comparison
points x, y ∈ ∆(p, q, r) the following inequality holds

dX(x, y) ≤ dE2(x, y) .

Remark. It is intuitively obvious that in a CAT(0)-space triangles are thin, that
is, α ≤ α, β ≤ β and γ ≤ γ. (This will be proven in Corollary ??(2).)

More generally, in a CAT(κ) space triangles are thinner than triangles in a
model space of constant curvature κ. For CAT(−1) the hyperbolic space is used,
for CAT(0) the euclidean plane and for CAT(1) we use the sphere.

Remark. CAT(0)-spaces are uniquely geodesic. To see this, let us take a geodesic
triangle ∆(p, q, r) ⊂ X with comparison triangle ∆(p, q, r) ⊂ E2. Let X ∈ [p, q] and
y ∈ [p, r] be such that dX(p, x) = dX(p, y). If now q = r, so that p = r, the geodesic
sides [p, q] and [p, r] must coincide since E2 is uniquely geodesic and hence x = y.

p

q = r

[p, r][p, q]

p

q = r

[p, q] = [p, r]

Since
dX(x, x

′) ≤ dE2(x, x′) = 0,
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then x = y and hence [p, q] = [p, r].

Notice that we will show in Theorem III.2 that Riemannian symmetric spaces
of non-compact type are CAT(0). However the proof of this fact uses that they are
uniquely geodesic, which will be shown in Proposition ??.

Proposition III.1

Let (X, d) be a complete CAT(0)-space.

(1) If S ⊂ X is a bounded set and

rx := inf
{
r > 0 : S ⊂ B(x, r) for some x ∈ X

}
then there exists a unique xs ∈ X such that S ⊂ B(xs, rs). We call this
the circumcenter of S.

(2) Let C ⊂ X be a closed convex set. Then there exists a unique pC(x) ∈ C
such that

dX(x, pC(x)) ≤ d(x,C) := inf{dX(x, y) : y ∈ C}

(3) Let γ1, γ2 : R → X be two geodesics parametrised by arclength. The map

R −→ R
t 7→ dX(γ1(t), γ2(t))

is convex.

Proof. (1) Let (rn)n∈N ⊂ R be a sequence such that rn → rs that has the property
that there is xn ∈ X such that S ⊂ B(xn, rn).

Claim: (xn)n∈N is Cauchy.

If so, (xn)n∈N converges since X is complete. We set xs := limxn, so that
S ⊂ B(xs, rs). To see that it is unique, let xs, x

′
s be two such points and let us

define

yn =

{
xs n even

x′s n odd.

Thus S ⊂ (B(xs, rs) ∩ B(x′s, rs)), so that S ⊂ B(yn, rs). Again by the claim
that the sequence (yn)n∈N is Cauchy, hence convergent, it follows that xs = x′s.

Proof of claim: Let ε > 0. Take then two points xn, xℓ of the sequence and
define m to be the midpoint of the geodesic [xn, xℓ] which connects them.
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xn

xℓ

m

y

Then by definition of rs there is a y ∈ S such that

dX(y,m)2 > r2s − ε.

If not, then for every y ∈ S we had dX(y,m)2 ≤ r2s − ε which contradicts the
definition of rs as it would imply S ⊂ B(m, rs − ε).

Consider then the geodesic triangle ∆(xn, xℓ, y) and its comparison triangle
∆(xn, xℓ, y).

xn xℓ

y

M

xn = vn xℓ = vℓ

y = 0

vn+vℓ
2

Write y = 0, xn = vn and xℓ = vℓ and note that the comparison point of
M ∈ [xn, xℓ] i.e. M ∈ [xn, xℓ] corresponds to

vn+vℓ
2

. Then∥∥∥∥vn + vℓ
2

∥∥∥∥2 = dE2(y,M)2
CAT(0)

≥ dX(y,m)2 > r2s − ε

implies that
−2⟨vn, vℓ⟩ < ∥vn∥2 + ∥vℓ∥2 − 4(r2s − ε).
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But then

∥vn − vℓ∥2 = ∥vn∥2 + ∥vℓ∥2 − 2⟨vn, vℓ⟩ < 2∥vn∥2 + 2∥vℓ∥2 − 4(r2s − ε)

and by definition of rs, given the chosen ε > 0 there is a N ∈ N such that
r2k ≤ rs + ε for all k ≥ N . Hence choose n,m ≥ N and note

∥vn∥2 = dE2(xn, y) < r2s + ε and ∥vℓ∥2 = dE2(xℓ, y) < r2s + ε.

Thus it follows that

dX(xn, xℓ) ≤ dE2(xn, xℓ)
2 = ∥vn − vℓ∥2 ≤ 8ε

and thereby that (xn) is Cauchy.

(2) Exercise.

(3) Write f(t) := d(γ1(t), γ2(t)). For t1, t2 we note t := t1+t2
2

and want to show that

f(t) ≤ 1

2
(f(t1) + f(t2)).

Consider the midpointm of the geodesic segment [γ1(t1), γ2(t2)] and the compar-
ison triangle ∆(γ1(t1), γ1(t2), γ2(t2)). Since the two triangles ∆(γ1(t1),m, γ1(t))
and ∆(γ1(t1), γ2(t2), γ1(t2)) are similar and γ1(t) is the midpoint of [γ1(t1), γ2(t2)],
it follows that

dE2(γ1(t),m) =
1

2
dE2(γ1(t2), γ2(t2))

γ1(t1) γ1(t)
γ1(t2)

γ2(t1)
γ2(t) γ2(t2)

m
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Note that γ1(t) is the midpoint of [γ1(t1), γ1(t2)] which implies

dX(γ1(t),m) ≤ dE2(γ1(t),m)

=
1

2
dE2(γ1(t2), γ2(t2))

=
1

2
dX(γ1(t2), γ2(t2)).

Likewise, by considering the geodesic triangle ∆(γ1(t1), γ2(t1), γ2(t2)), we show
that

dX(γ2(t),m) ≤ 1

2
dX(γ1(t1), γ2(t1)).

Finally we observe that

f(t) = dX(γ1(t), γ2(t))

= dX(γ1(t),m) + dX(m, γ2(t)

≤ 1

2
(dX(γ1(t2), γ2(t2)) + dX(γ1(t1), γ2(t1)))

=
1

2
(f(t2) + f(t1)) ■

Theorem III.2

Riemannian symmetric spaces of non-compact type are CAT(0).

As remarked already before of the remark right before Proposition ??, we coudl
infer that Riemannian symmetric spaces of non-compact type are uniquely geodesic.
However the proof of Theorem III.2 uses Proposition ??, where the fact that a
Riemannian symmetric space is uniquely geodesic is proven directly.

Proposition III.3

Let M be a Riemannian symmetric space of non-compact type. Then
Expo : ToM → M is a distance increasing diffeomorphism and hence M is
uniquely geodesic.

Proof. We want to show that for X ∈ ToM and for ξ ∈ TX(ToM) ∼= To(M), if X ∈ p

∥dX Expo(ξ)∥ ≥ ∥ξ∥ ..

According to Corollary II.24 X ∈ p

dX(Expo ◦ deπ) = (doLexp(X) ◦ deπ) ◦

(
∞∑
n=0

(TX
∣∣
p
)n

(2n+ 1)!

)
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where TX = (adgX)2. Since both deπ and doLexpX : ToM → T(expX)∗oM preserve
the scalar product (the first by definition and the second since it is the parallel
transport along t 7→ exp tX · o), the assertion can be true only if

T :=
∞∑
n=0

(TX
∣∣
p
)n

(2n+ 1)!

is distance increasing.
To see this, we first claim that TX |p is diagonalizable. In fact, for X, Y ∈ p

Bg(TXY, Y ) = Bg((adgX)2Y, Y )

= −Bg(adg(X)Y, adg(X)Y )

≥ 0

because adg(X)(p) ⊂ k and Bg|k×k ≤ 0. It follows that there exists an orthonormal
basis {e1, .., en} of p such that TX = diag(λ1, ..., λn) with λj > 0. Therefore

T = diag(µ1, ..., µn) with µj =
∞∑
k=0

λki
(2k + 1)!

≥ 1

and hence T is distance increasing. ■

Remark. The assertion of Proposition III.3 is actually true for all complete Rie-
mannian manifolds of non-positive curvature.

Corollary III.4

(1) (Law of cosine) Let M be a Riemannian symmetric space of non-compact
type, ∆ a geodesic triangle with a, b, c as sides and opposite angles α, β, γ.
Then

c2 ≥ a2 + b2 − 2ab cos(γ)

(2) If ∆ = ∆(p, q, r) with comparison triangle ∆ = ∆(p, q, r), then

α ≤ α, β ≤ β and γ ≤ γ.

Proof. Consider the geodesic segment [p, q], [p, r] and [q, r] in M . Then [p, q] and
[p, r] are determined by tangent vectors vq, vr ∈ TpM such that ∥vq∥ = b and ∥vr∥ =
a, so that q = Expp(vq) and r = Expp(vr)

0

γvq vr

p

b aγ

c
q r

p

γ
b a

cq r
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By definition, the angle at 0 between vq and vr is γ, so that

∥vr − wr∥2 = a2 + b2 − 2ab cos(γ).

By Proposition III.3

c2 = dx(q, r)
2

= dX(Exp(vq),Exp(vr))
2

≥ ∥(vq − vr∥2

= a2 + b2 − 2ab cos(γ).

(2) From the first part we note that

c2 = a2 + b2 − 2ab cos(γ)

c2 ≥ a2 + b2 − 2ab cos(γ)

and thus γ ≤ γ. ■

Proof of Theorem III.2. We proceed in two steps. First we show that any space that
satisfies the Law of Cosine in Corollary III.4 satisfies the CAT(0) inequality for a
vertex and a point inside a geodesic side, then we take two generic points.

(1) Let ∆ = ∆(p, q, r)v be a geodesic triangle and ∆ = ∆(, p, q)r be its comparison
triangle. Take x ∈ [q, r] with x ∈ [q, r].

q r

p

x
β

γ δ

q r

p

x

β

By definition of comparison triangle,

dM(q, x) = dE2(q, x) and dM(x, r) = dE2(x, r) ,

but we want to compare dM(x, r) and dE2(x, r). The idea is to consider x as the
vertex of two geodesic triangles ∆(p, q, x) and ∆(x, r, p)

dM(p, x) ≤ dE2(p, x).
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q0 x0

p0

β0 γ0

r0

x0

p0

δ0

It follows from Corollary III.4 that γ ≤ γ0 and δ ≤ δ0, so that π = γ+δ ≤ γ0+δ0.
Thus q0, x0 and r0 are not necessarily collinear. Let r′0 be collinear with q0 and
x0 and such that

dE2(x0, r
′
0) = dE2(x0, r0) = dM(x, r) .

q0 x0

p0

β0 γ0

r0

x0

p0

δ0 r′0
δ′0

Then ∆′
0 ≤ δ0, so that

dE2(p0, r
′
0) ≤ dE2(p0, r0) = dM(p, r) = dE2(p, r) . (III.1)

Applying Corollary III.4 to the triangle ∆(p0, r′0, q0) we obtain

dE2(p0, r
′
0)

2 = dE2(p0, q0)
2 + dE2(q0, r

′
0)

2 − 2dE2(p0, q0)dE2(q0, r
′
0) cos β0

and to the triangle ∆(p, r, q) we obtain

dE2(p, r)2 = dE2(p, q)2 + dE2(q, r)2 − 2dE2(p, q)dE2(q, r) cos β .

From (III.1) and since dE2(p0, q0) = dE2((p, q), and dE2(p0, r
′
0) = dE2(p, r), we

obtain that β0 ≤ β. It follows then that

dE2(p, x) ≥ dE2(p0, q0) = dM(p, x) , (III.2)

where the inequality comes from the fact that we are in Euclidean geometry and
the equality from the comparison of ∆(q, x, p) with ∆(q0, x0, p0).
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(2) Let now y be a generic point on one of the geodesic sides, for example y ∈ [p, q].

q r

p

x

y

β

q r

p

x

y

β
q0 x0

p0

y0

β0

From (1) applied to the geodesic triangle ∆(q, x, p) and to ∆(x0, p0, q0) we obtain
that

dM(x, y) ≤ dE2(x0, y0) .

Still from the proof of (1) we know that β) ≤ βm which, by relabeling the vertex
implies that

dE2(x0, y0) ≤ dE2(x, y) .

The two last formulas give the desired assertion.

■

Theorem III.5

Let M be a Riemannian symmetric space of non-compact type, o ∈ M and
K = StabG(o). Then

(1) Any compact subgroup U < G has a fixed point in M . In particular
StabG(p) is a maximal compact subgroup for every p ∈ M . All maximal
subgroups arise in this way and they are all conjugate.

(2) The map from M to the subgroups in G defined as p 7→ StabG(p) is
injective.

Proof. (1) If U is compact, S = U∗o is bounded and thus has a circumcenterxS
whose existence was proven in Proposition III.1. Since S is by construction U -
invariant, the circumcenter is fixed by U . Thus StabG(p) is a maximal compact
subgroup in G.
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(2) By the first part, any compact subgroup U < G is contained in some StabG(p).
Since maximal compact subgroups are conjugate, they fix two points in M (by
transitivity).

Also if p ̸= q, then StabG(p) ̸= StabG(q). If not, there would exist 0 ̸= Z ∈ p
such that adg(K)Z = 0. This would be true in one of the irreducible symmetric
spaces. But then this would have dimension 1 which is impossible since M is of
non-compact type. ■

Remark. If M is a Riemannian symmetric space of non-compact type, we can thus
write it as

M = G⧸K

where K < G is a maximal compact subgroup. If M∗ is of compact type, we can
write

M∗ = G∗
⧸K

where K < G is again a maximal compact subgroup.

III.2 Flats and Rank

Definition

A k-flat F in a Riemannian symmetric space M is a totally geodesic sub-
manifold isometric to Ek for some k ∈ N, that is, for every p ∈ M and any
X, Y ∈ TpM orthonormal we have

κp(Span{X, Y }) = 0.

Remark. Notice that a 1-flat is nothing but a geodesic. Moreover, if the sectional
curvature of the symmetric space is strictly negative, then the symmetric space must
be of rank one. The rank one symmetric spaces of non-compact type are exactly
the real, complex and quaternionic hyperbolic spaces and the hyperbolic plane over
the Cayley numbers.
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Theorem III.6

(1) Let (G,K) be a Riemannian symmetric pair of compact or non-compact
type, deπ : p → ToM and Expo ◦ deπ : p → M . Then F ∋ o is a flat
subspace if and only if

F = (Expo ◦ deπ)(a)

where a ⊂ p is an Abelian subspace.

(2) If M = G/K is of non-compact type, Expo ◦ deπ : a → F is an isometry.

Proof. (1) Let F be totally geodesic. Then F = (Expo ◦deπ)(n) where a is a Lie
triple system. Thus F is a Riemannian symmetric space with Riemannian sym-
metric pair (G′, K ′) where g′ = n ⊕ [n, n] and K ′ = K ∪ G′. Since G′ acts
transitively on F , it is enough to consider the sectional curvature at the base-
point o ∈ M . We then note that for all X, Y ∈ p we have from (II.18) that
κo(Span{X, Y }) = −Bg([X, Y ], [X, Y ]), so that for all X, Y ∈ n,

κo(Span{X, Y }) = 0 ⇔ [X, Y ] = 0 .

(2) For every X ∈ p we note that

dX(Expo ◦ deπ) = (doLexpX ◦ deπ) ◦
∞∑
n=0

(TX
∣∣
p
)n

(2n+ 1)!

where the first term preserves the inner product and the second is in general
distance increasing. However, if X ∈ a, then TX

∣∣
a
= 0. Since Expo ◦deπ is

a diffeomorphism (Proposition III.1), it is a Riemannian isometry and thus an
isometry. ■

We need to find a way to determine the maximal Abelian subalgebras in p. To
this purpose, if X ∈ g we write

Centrg(X) := {Y ∈ g : [X, Y ] = 0}.

If a ⊂ p is Abelian andX ∈ a, then a ⊂ Centrg(X)∩p. It follows that if Centrg(X)∩p
is Abelian, it must be maximal.

Definition: Regular and Singular Elements

X ∈ p is called regular if Centrg(X) ∩ p is Abelian and singular otherwise.
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Theorem III.7: [Hel01, Lemma V.6.3(i)]

Let M = G/K be a Riemannian symmetric space of compact or non-compact
type, G = Iso(M)◦ and let a ⊂ p be a maximal Abelian subspace. Then there
exists an element X ∈ a such that Centrg(X) ∩ p = a.

Proof. If a ⊂ p, let exp(a) < G be the corresponding connected Lie group and let
A = exp(a). We want to show that exp(a) is closed and hence a torus.

Note that since a ⊂ p, then for all X ∈ a Θ(X) = −X. Moreover, since Θ = deσ
we have for all X ∈ a,

σ(exp(X)) = exp
(
Θ(X)

)
= exp(−X) = exp(X)−1 ..

By continuity,
σ(a) = a−1 ∀a ∈ A

and therefore Θ(X) = −X for all X ∈ Lie(A). Thus Lie(A) ⊂ p and, by maximality
of a Lie(A) = a. Thus A = exp(a) is closed. Since exp(a) is compact and any
connected Abelian Lie group is of the form Tk × Rl, A = exp(a) must actually be
a torus, since it is compact. There exists a dense flow, that is, X ∈ a such that
{exp(tX) : t ∈ R} is dense in A. If X ∈ a ⊂ p, then a ⊂ Centrg(X) ∩ p.

To show the reverse inclusion, let Y ∈ Centrg(X) ∩ p and note that {exp(sY ) :
s ∈ R} commutes with {exp(tX) : t ∈ R} and hence with A = exp(a) by density.
Thus [Y, a] = 0. Since a is Abelian, a + RY is Abelian too and a + RY ⊂ p. Since
a is maximal Abelian, we have that a+ RY ⊂ a which gives Y ∈ a.

Let now M be of non-compact type and (g,Θ) be the associated orthogonal
symmetric Lie algebra. Take then M∗ its compact dual with (g∗,Θ∗) the associated
orthogonal symmetric Lie algebra. We note that a ⊂ p is Abelian if and only if
ia ⊂ ip is Abelian. Therefore, by the conclusion for the compact case, there exists
iX ∈ ip such that ia = Centrg(iX) ∩ ip. Thus we conclude that

a = Centrg(iX) ∩ p. ■

Theorem III.8

Let M = G/K be a Riemannian symmetric space of compact or non-compact
type. If a, a′ are maximal Abelian subspaces of p, there exists k ∈ K such
that a′ = AdG(k)a.

Definition: Rank

Let M be a Riemannian symmetric space of compact or non-compact type.
The rank rk(M) is the dimension of a maximal flat in M .
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Proof of Theorem III.8. Let X ∈ a and X ′ ∈ a′ be two regular elements. Consider
the function

f : K −→ R
k 7→ Bg(AdG(k)X,X

′)

As K is compact and f is smooth, f has a critical point k0 ∈ K. Thus for all Z ∈ k

0 =
d

dt

∣∣∣∣
t=0

f(k0 exp(tZ)) =

=
d

dt

∣∣∣∣
t=0

Bg(AdG(k0 exp(tZ))X,X
′)

=
d

dt

∣∣∣∣
t=0

Bg(AdG(k0)AdG(exp(tZ))X,X
′)

= Bg

(
AdG(k0)

d

dt

∣∣∣∣
t=0

(AdG(exp(tZ)X), X ′
)

= Bg(AdG(k0)(adg Z)X,X
′)

= Bg(AdG(k0)[Z,X], X ′)

= Bg([AdG(k0)Z,AdG(k0)X], X ′)

= −Bg([AdG(k0)X,AdG(ko)Z], X
′)

= Bg(AdG(k0)Z︸ ︷︷ ︸
∈k

, [AdG(k0)X,X
′]︸ ︷︷ ︸

∈k

) .

Since p is AdG(K)-invariant, then AdG(k0)X ∈ p and hence [AdG(k0)X,X
′] ∈ k.

Since Z is arbitrary, it follows from the non-degeneracy of the Killing form that
[AdG(k0)X,X

′] = 0, that is AdG(k0)X ∈ Centrg(X
′). Since X ′ is regular, this

implies that AdG(k0)X ∈ Centrg(X
′) ∩ p = a′. But a′ is Abelian, hence every

element in a′ commutes with AdG(k0)X and hence

a′ ⊂ Centrg(AdG(k0)X) ∩ p

= AdG(k0)(Centrg(X) ∩ p)

= AdG(k0)(a).

By maximality it follows that a′ = AdG(k0)(a). ■

Corollary III.9

Let M be a Riemannian symmetric space of compact or non-compact type.
Every geodesic is contained in at least one maximal flat.
It is contained in exactly one flat if and only if the X ∈ p that defines it is
regular.
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Proof. Let γ(t) := exp(tX) · o. Thus γ ⊂ exp(a) · o for every Abelian a with X ∈ a.

(⇐) Let X ∈ p be regular and let a, a′ ⊂ p be maximal Abelian subspaces such that
γ ⊂ exp a · o and γ ⊂ exp a′ · o. Since X ∈ a′ and a′ Abelian then all elements in a′

commute with X and hence a′ ⊂ Centrg(X) ∩ p = a. But from Theorem III.8 we
know that dim a = dim a′, so that from a′ ⊆ a we deduce that a = a′.

(⇒) Conversely, let us suppose that γ is contained in exactly one flat, γ ⊂ exp a · o,
where a ⊂ p is maximal Abelian. Suppose thatX is not regular, that is Centrg(X)∩p
is not maximal Abelian, so that a ⊊ Centrg(X) ∩ p. Let X ′ ∈ Centrg(X) ∩ p and
X ′ /∈ a. Since [X,X ′] = 0, the Span{X,X ′} is Abelian and let a′ be a maximal
Abelian that contains Span{X,X ′}. Since X ∈ a′, then γ ⊂ exp(a′) · o which is a
contradiction because X ′ /∈ a and X ′ ∈ a, so that a ̸= a′. ■

Example. We have seen that if M = SL(n,R)/ SO(n,R), then p = {X ∈ sl(n,R) :
X = X t}. We claim that H ∈ a is regular if and only if ti ̸= tj if i ̸=. Note that
saying that X ∈ Centrg(H) ∩ p means that for all 1 ≤ i, j ≤ n

0 = [H,X]ij = (tj − ti)Xij .

If tj ̸= ti for i ̸= j, then Xij = 0, so that X ∈ a and hence Centrg(H)∩ p ⊆ a. If, on
the other hand, 0 = [H,X] for some other H such that ti = tj for some i ̸= j, then
Xij could be non-zero and Centrg(H) ∩ p would not be Abelian anymore. Thus is

a :=

{
diag(t1, . . . , tn) : tj ∈ R,

n∑
j=1

tj = 0

}
is a maximal Abelian subspace of p.

We have seen that SL(n,R)/ SO(n,R) is the set Pos1(n) of positive matrices
with determinant 1, with the action by conjugation g · p = gtpg for p ∈ Pos1(n),
g ∈ SL(n,R) and with base point Idn ∈ Pos1(n). Hence a maximal flat is

F = exp a · Idn =

{
diag(e2t1 , . . . , e2tn) : tj ∈ R,

n∑
j=1

tj = 0

}

=

{
diag(λ1, . . . , λn) : λj > 0,

n∏
j=1

λj = 1

}
.

Now we show that if X ∈ a has non-distinct eigenvalues, it is contained in a
1-parameter family of flats. We will show it in the case n = 3. Consider

X =

1 0 0
0 1 0
0 0 2

 ∈ a
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and let Y be a vector orthogonal to X (e.g. Y = diag(1,−1, 0)). Then a =
Span{X, Y } is a maximal Abelian subalgebra containing γ = exp(tX) ⊂ exp(a).
It is easy to see that if

kθ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ∈ K,

then AdG(kθ)X = X, but AdG(kθ)Y ̸= Y . Thus γ belongs to the one-parameter
family of flats AdG(kθ)Span{X,AdG(kθ)Y } = Span{X,AdG(kθ)Y }.

Example. Let M = SO(p, q)/SO(p) × SO(q), for p ≤ q. A maximal Abelian
subspace a ⊂ p is given by

a =

{(
0 A
A 0

)
: A = (aij) ∈Mp×q(R), aij = 0 if i ̸= j

}
,

so rk(SO(p, q)/SO(p)× SO(q)) = min{p, q}.

Example. IfM = Sp(2q,R)/(SO(2q)∩Sp(2q,R)), then a maximal Abelian subspace
a ⊂ p is given by

a =

{(
A 0
0 −A

)
: A = diag(t1, . . . , tq), tj ∈ R

}
.

and hence rk(M) = q.

III.3 Roots and Root Spaces

Let (g,Θ) be an orthogonal symmetric Lie algebra of non-compact type. On g× g
we can define the following positive definite bilinear form

⟨X, Y ⟩ := −Bg(X,Θ(Y )) . (III.3)

Notice that the restriction of this form to p coincides with the Killing form.

Lemma III.10:

For every X ∈ p the operator adgX is self-adjoint with respect to ⟨·, ·⟩.

Proof. We need to show that if X ∈ p, Y, Z ∈ g, then

⟨(adgX)Y, Z⟩ = ⟨Y, (adgX)Z⟩ .
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This is a simple verification. In fact, from Θ(X) = −X we get

⟨(adgX)Y, Z⟩ = −Bg((adgX)(Y ),Θ(Z))

= Bg(Y, (adgX)Θ(Z))

= Bg(Y, [X,Θ(Z)])

= Bg(Y, [−Θ(X),Θ(Z)])

= −Bg(Y,Θ((adgX)Z))

= ⟨Y, (adX)Z⟩ . ■

It follows from the above lemma that if a ⊂ p is a maximal Abelian subspace,
then {adgX : X ∈ a} is a commuting family of self-adjoint operators which are
simultaneously diagonalisable, and we can consider the following

Definition: Root and Root space

A linear map α : a → R is called a root of the pair (g, a) if

gα := {X ∈ g : (adgH)(X) = α(H)X for all H ∈ a} ≠ {0}.

In this case the subspace gα is called a root space.

We have the following rather immediate properties:

Lemma III.11

(1) [gα, gβ] ⊆ gα+β.

(2) Θ(gα) = g−α, and, in fact, Θ: gα → g−α is an isomorphism.

Proof. (1) Let X ∈ gα and Y ∈ gβ. Then for any H ∈ a we have [H,X] = α(H)X
and [H,Y ] = β(H)Y , so that, by the Jacobi identity,

[H, [X, Y ]] = [[H,X], Y ] + [X, [H, Y ]] = [α(H)X, Y ] + [X, β(H)Y ]

= α(H)[X, Y ] + β(H)[X, Y ] = (α + β)(H)[X, Y ] .

(2) Let X ∈ gα and H ∈ a ⊂ p arbitrary. Then [H,X] = α(H)X and Θ(H) = −H,
so that

[H,Θ(X)] = −[Θ(H),Θ(X)] = −Θ[H,X] = −Θ(α(H)X) = −α(H)Θ(X) . ■

If α ≡ 0, then a ⊂ g0 = Centrg(a). If

Σ := {α : α is a non-trivial root of (g, a)}
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denotes the set of non-trivial roots of (g, a), then we have a decomposition

g = g0 ⊕
∑
α∈Σ

gα ,

because {ad(H) : H ∈ a} is a commuting family of diagonalisable endomorphisms.
Observe that this decomposition is orthogonal with respect to the scalar product
⟨·, ·⟩. Moreover it follows from the finite dimensionality of g that the set Σ is finite.

Before showing that the roots of the pair (g, a) satisfy the properties of an ab-
stract root system (see Theorem III.15 and § ??), we want to show how regular
elements can be found using the roots of (g, a).

Notation. From now on, we will always assume that a ⊂ p is a maximal Abelian
subalgebra. Then we observe

Lemma III.12

If a ⊂ p is maximal Abelian, then

g0 ∩ p = a.

Proof. We obviously have

a ⊂ g0 ∩ p = {X ∈ p : [X,H] = 0 for all H ∈ a}.

On the other hand, if X ∈ g0 ∩ p, then a + RX is an Abelian subspace containing
a, which, by maximality of a, implies that X ∈ a. ■

Lemma III.13:

A vector H ∈ a \ {0} is regular if and only if α(H) ̸= 0 for all α ∈ Σ.

Proof. (⇒) As H ∈ a∖ {0} is regular, Centrg(H) ∩ p is maximal Abelian. Since a
is maximal Abelian and a ⊂ Centrg(H) ∩ p we necessarily have a = Centrg(H) ∩ p.

Assume by contradiction that there exists α ∈ Σ such that α(H) = 0. Let
X ∈ gα\{0}, Xk =

1
2
(X+Θ(X)) and Xp =

1
2
(X−Θ(X)). Then X = Xk+Xp ∈ k⊕p

and we get for any A ∈ a

adg(A)(Xk +Xp) = α(A)(Xk +Xp).

From the relations [k, p] ⊂ p and [p, p] ⊂ k it follows in particular that for all A ∈ a

adg(A)(Xp) = α(A)Xk . (III.4)
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But if α(H) = 0, then adg(H)(Xp) = 0, hence Xp ∈ Centrg(H) ∩ p. From this and
again from (III.4) we get

0 = adg(A)(Xp) = α(A)Xk

for all A ∈ a. But as α ̸≡ 0 on gα this implies Xk = 0 and therefore X = Xp ∈ a.
Thus gα ⊂ a in contradiction to the fact that a ⊂ g0.

(⇐=) Assume now that α(H) ̸= 0 for all α ∈ Σ, but that H ∈ a\{0} is not regular.
Then Centrg(H) ∩ p is not maximal Abelian, that is a ⊊ Centrg(H) ∩ p. So there
exists Y ∈ Centrg(H)∩p with Y /∈ a. Let Yα denote the projection of Y on the root
subspace gα, so that

Y = Y0 ⊕
∑
α∈Σ

Yα,

where Y0 ∈ Centrg(a) ⊂ Centrg(H). Then

0 = [H,Y ] = [H,
∑
α∈Σ

Yα] =
∑
α∈Σ

[H,Yα] =
∑
α∈Σ

α(H)Yα .

Since α(H) ̸= 0 for all α ∈ Σ this implies Yα = 0 for all α ∈ Σ. We conclude
Y = Y0 ∈ Centrg(a) ∩ p = a which is a contradiction. ■

Corollary III.14

Let areg denote the set of regular elements in a. Then

areg = a∖
⋃
α∈Σ

kerα .

Definition: Weyl Chamber

Let a be a maximal Abelian subalgebra. A connected component of areg is
called a Weyl chamber in a.

Remark. • Note that a Weyl chamber is an open cone in Euclidean space, as
it is the complement of a collection of hyperplanes

{X ∈ g : α(X) = 0} .

• A Weyl chamber can also be described as the equivalence classes in a of the
equivalence relation

H1 ∼ H2 :⇐⇒ α(H1)α(H2) > 0 for all α ∈ Σ .
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Example (Continuation of Example III.2). Let G/K = SL(n,R)/ SO(n) and de-
note by Eij the matrix whose (i, j)-th matrix coefficient is 1 and all other matrix
coefficients are 0. If Hj := Ejj − Ej+1,j+1, then (H1, . . . , Hn−1, Eij : 1 ≤ i ̸= j ≤ n)
is a basis for g. Moreover, if H = diag(t1, . . . , tn) =

∑n
j=1 tjEjj ∈ a, then it is easy

to check that

adg(H)(Eij) = [H,Eij] = (ti − tj)Eij ,

and

adg(H)(Hj) = 0

for all i, j. Thus there are n(n− 1) non-zero roots {αij}i ̸=j, given by

αij(A) = Aii − Ajj ,

and n(n− 1) one-dimensional root spaces gij := gαij
spanned by Eij for i ̸= j. The

space a is spanned by (H1, . . . , Hn−1) and g0 = a. In particular we can write

sl(n,R) = a⊕
∑
i ̸=j

REij .

We want to show in this example that there is a one-to-one correspondence
between the Weyl chambers of a and the elements of the permutation group Sn in
n letters. In fact, let A = diag(λ1, . . . , λn) and B = diag(µ1, . . . , µn) be regular
elements in a. Since A is regular, the λj are distinct and there exists a unique
permutation σ ∈ Sn such that

λσ(1) > · · · > λσ(n) .

Similarly, since B is regular, there exists a unique permutation τ ∈ Sn such that

µτ(1) > · · · > µτ(n) .

The condition that A,B determine the same Weyl chamber is exactly that they are
equivalent, that is

(λi − λk)(µi − µk) > 0

for all i ̸= k. It is not difficult to show that this holds if and only if σ = τ , so that
a Weyl chamber in a is given by

a+ := {diag(t1, . . . , tn) ∈ a :
n∑

i=1

ti = 0, t1 > t2 > · · · > tn} .
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Now let

a∗ −→ a

α 7→ Hα

be the isomorphism defined by

α(H) = Bg(H,Hα) for all H ∈ a.

The central result is the following

Theorem III.15

Let a ⊂ p be a maximal Abelian subspace, Σ ⊂ a∗ \ {0} the set of non-trivial
roots of a in g. Then Σ is a root system, that is

(1) Σ spans a∗. Let α, β ∈ Σ. Then

(2)

β − 2Bg(Hα, Hβ)

Bg(Hα, Hα)
α ∈ Σ and

(3)

2
Bg(Hα, Hβ)

Bg(Hα, Hα)
∈ Z.

Remark. We note that for every α ∈ a∗ \ {0} the map

Sα : a
∗ −→ a∗

β 7→ β − 2⟨α, β⟩
⟨α, α⟩

α

is the orthogonal reflection fixing the hyperplane orthogonal to α. In particular we
have

• Sα(α) = −α and

• Sα(β) = β if β ⊥ α.

α

Sα(α)

β = Sα(β)

and property (2) above states that Sα(Σ) ⊂ Σ for all α ∈ Σ. Property (3) above is
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more mysterious and will be a consequence of the classification of finite-dimensional
representations of sl(2,R).

We start the proof of Theorem III.15 with the following lemma:

Lemma III.16

Let (g,Θ) be an orthogonal symmetric Lie algebra of non-compact type and
a a maximal Abelian subspace of p. For α ∈ Σ and X ∈ gα we denote xα the
unique positive multiple of X such that

⟨xα, xα⟩ =
2

Bg(Hα, Hα)
.

Let

yα = −Θ(xα) and hα =
2Hα

Bg(Hα, Hα)
.

Then

[xα, yα] = hα

[hα, xα] = 2xα

[hα, yα] = −2yα.

Example. Let us now look at a special case of Example III.2, namely g = sl(2,R)
and Θ ∈ Aut(g) defined by

Θ(X) = −X t for X ∈ sl(2,R).

Recall that

a =

{(
λ 0
0 −λ

)
: λ ∈ R

}
is a maximal Abelian subspace of p. Since for all λ, x, y ∈ R[(

λ 0
0 −λ

)
,

(
0 x
0 0

)]
= 2λ

(
0 x
0 0

)
[(
λ 0
0 −λ

)
,

(
0 0
y 0

)]
= −2λ

(
0 0
y 0

)
defining α ∈ a∗ by

α

((
λ 0
0 −λ

))
= 2λ
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we get g0 = a and

gα =

{(
0 x
0 0

)
: x ∈ R

}
,

g−α =

{(
0 0
y 0

)
: y ∈ R

}
.

To find the Hα that realizes the isomorphism a∗ → a, α 7→ Hα, let H =

(
λ 0
0 −λ

)
∈

a be a generic element and let us find µ ∈ R such that Hα =

(
µ 0
0 −µ

)
realizes the

isomorphism. Then a computation shows that

2λ = α(H) = Bg(H,Hα) = 8λµ,

so that µ = 1
4
and hence

Hα =

(
1
4

0
0 −1

4

)
, Bg(Hα, Hα) = 8µ2 =

1

2
, and hα =

2Hα

Bg(Hα, Hα)
=

(
1 0
0 −1

)
.

Now we look for xα. Let X =

(
0 x
0 0

)
∈ gα.A computation gives

⟨
(
0 x
0 0

)
,

(
0 x
0 0

)
⟩ = 4x2

and setting this to be equal to

2

Bg(Hα, Hα)
.

gives us that xα = 1
x
X. Thus

xα =

(
0 1
0 0

)
, yα =

(
0 0
1 0

)
.

We found in fact the standard basis for sl(2,R), namely

e+ :=

(
0 1
0 0

)
, e− :=

(
0 0
1 0

)
and h :=

(
1 0
0 −1

)
.

The following corollary is the generalization of the above example to the case of
a semisimple Lie algebra.
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Corollary III.17

Given α ∈ Σ and X ∈ gα\{0} we define xα, yα and hα as in Lemma III.16.
Then the linear map sl(2,R) → g defined on a basis via

e+ 7→ xα

e− 7→ yα

h 7→ hα

is an injective Lie algebra homomorphism with image

sl(2,R)X := Rxα + Rhα + Ryα ⊂ g.

Remark. Note that xα ∈ gα, yα ∈ g−α and hα ∈ a.

Proof of Lemma III.16. Since hα ∈ a and xα ∈ gα we have

[hα, xα] = α(hα)xα.

By definition of hα,

α(hα) =
2α(Hα)

Bg(Hα, Hα)

=
2Bg(Hα, Hα)

Bg(Hα, Hα)

= 2.

Similarly we compute [hα, yα] = −2yα.
To show that [xα, yα] = hα, note that

[xα, yα] = [xα,−Θ(xα)] = −[xα,Θ(xα)].

Since

hα =
2Hα

Bg(Hα, Hα)

= ⟨xα, xα⟩Hα

the claim follows from the following statement. ■

Lemma III.18

Let α ∈ Σ, X ∈ gα. Then

[X,Θ(X)] = −⟨X,X⟩Hα.
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Proof. By the definition (III.3) of the scalar product on g it is enough to prove that

[X,Θ(X)] = Bg(X,Θ(X))Hα.

We first claim that [X,Θ(X)] ∈ a = g0 ∩ p: Indeed, X ∈ gα implies Θ(X) ∈ g−α,
hence [X,Θ(X)] ∈ gα+(−α) = g0. On the other hand, we have

Θ([X,Θ(X)]) = [Θ(X), X] = −[X,Θ(X)],

hence also [X,Θ(X)] ∈ p.
Therefore

[X,Θ(X)]−Bg(X,Θ(X))Hα ∈ a,

and it remains to prove that this expression is in fact zero. Our strategy of proof is
to show that it is orthogonal to every element in a:

So let H ∈ a ⊂ p be arbitrary. Then using the equation

α(H) = Bg(H,Hα) = Bg(Hα, H) = ⟨Hα, H⟩

we get

⟨[X,Θ(X)], H⟩ = −Bg([X,Θ(X)],Θ(H))

= Bg([X,Θ(X)], H)

= −Bg(Θ(X), [X,H])

= Bg(Θ(X), [H,X])

= Bg(Θ(X), α(H)X)

= α(H)Bg(Θ(X), X)

= ⟨Hα, H⟩Bg(Θ(X), X)

= ⟨Bg(Θ(X), X)Hα, H⟩

and it follows that

⟨[X,Θ(X)]−Bg(Θ(X), X)Hα, H⟩ = 0 for all H ∈ a. ■

Remark. α(hα) = 2, α(H) = Bg(H,Hα) will be used over and over in the upcoming
computations.

According to Corollary III.17 we obtain for any X ∈ gα \ {0} a representation of
sl(2,R) on g via

sl(2,R) → sl(2,R)X
adg→ gl(g).

It is therefore essential to understand the representation theory of the Lie algebra
sl(2,R). We summarise the relevant information in the following
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Theorem III.19: [Ebe96, Lemma 1, p. 151]

(1) Every finite-dimensional representation of sl(2,R) is a direct sum of irre-
ducible representations.

(2) Every finite-dimensional irreducible representation of sl(2,R) is classified,
up to isomorphisms, by its dimension. If ρ : sl(2,R) → gl(V ) is an irre-
ducible representation, then ρ(h) is diagonalizable with simple eigenvalues

{(dimV − 1)− 2n : n = 0, . . . , dimV − 1, }

that is

{−(dimV − 1),−(dimV − 3), . . . , dimV − 3, dimV − 1}.

Examples. (1) If dimV = 1, we have only the trivial representation ρ : sl(2,R) →
gl(R) = R where ρ(X) = 0. In particular ρ(h) = 0 and 0 is the only eigenvalue.

(2) If dimV = 2 we have the identity representation ρ : sl(2,R) → gl(R2) , ρ(X) =
X. Since

ρ(h) =

(
1 0
0 −1

)
,

the eigenvalues are −1,+1 with eigenspaces Re1, Re2 ⊂ R2.

(3) The adjoint representation

ad: sl(2,R) → gl(sl(2,R))
X 7→ ad(X)

is the irreducible representation of sl(2,R) in dimension 3. The eigenvalues are
−2, 0, 2 with eigenspaces Re−, Re+, Rh.

(4) The general irreducible representation of dimension n + 1 of sl(2,R) can be
described as follows. Let Vn be the (n + 1)-dimensional vector space of homo-
geneous polynomials in X, Y of degree n, that is

Vn :=
{ n∑

k=0

akX
kY n−k : ak ∈ R

}
.

Then the Lie group SL(2,R) acts on Vn by linear substitution via

ρn : SL(2,R) → GL(Vn)

g 7→ ρ(g)
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where
(
ρn(g)P

)
(X, Y ) := P

(
(X, Y )g

)
for P ∈ Vn. Differentiating at the iden-

tity thus yields a map dIdρn : sl(2,R) → gl(Vn).

Explicitly, writing A =

(
a b
c −a

)
∈ sl(2,R) we get

(dIdρn)(A)P (X, Y ) =
d

dt

∣∣∣∣
t=0

ρn
(
exp(tA)

)
P (X, Y )

=
d

dt

∣∣∣∣
t=0

P ((X, Y ) exp(tA))

= d(X,Y )P
(
(X, Y )A

)
=
∂P

∂X
(aX + cY ) +

∂P

∂Y
(bX − aY )

Taking A = h and P (X, Y ) = Xk, Y n−k, this simplifies to

(dIdρn)(h)X
kY n−k = (2k − n)XkY n−k

so that the eigenvalues are {2k− n : k = 0, . . . , n} = {−n,−n+2, . . . , n− 2, n}
with eigenspaces RY n, RXY n−1, . . . ,RXn−1Y , RXn.

Proof of Theoren III.15. For α, β ∈ Σ we set

Wβ,α :=
⊕

{gβ+kα : k ∈ Z} ⊂ g.

For X ∈ gα \ {0} we consider adg restricted to sl(2,R)X = Rxα +Rhα +Ryα. Since
[gα, gβ] ⊂ gα+β, xα ∈ gα, yα ∈ g−α we get that Wβ,α is invariant by adg

∣∣
sl(2,R)X

.

Moreover, if Y ∈ gβ+kα, then

adg(hα)(Y ) = [hα, Y ]

= (β + kα)(hα)Y =
(
β(hα) + kα(hα)

)
Y

and thus the eigenvalues of adg(hα) on Wβ,α are

{β(hα) + k α(hα)︸ ︷︷ ︸
=2

: k ∈ Z such that gβ+kα ̸= {0}}

= {β(hα) + 2k : k ∈ Z such that β + kα ∈ Σ ∪ {0}}.

Since g is finite dimensional, there is of course a finite number of eigenvalues of
ad(hα) on Wβ,α. We set then

r := min{k ∈ Z : β + kα ∈ Σ ∪ {0}}
s := max{k ∈ Z : β + kα ∈ Σ ∪ {0}}
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and let nX := nX(β, α) be the maximal dimension of an irreducible submodule of
Wβ,α that is sl(2,R)X-invariant. By Theorem III.19 (2) we have

1− nX = β(hα) + 2r

nX − 1 = β(hα) + 2s

and therefore −β(hα) = r + s ∈ Z, which shows assertion (3) in Theorem III.15
since

β(hα) = β

(
2Hα

Bg(Hα, Hα)

)
= 2

β(Hα)

Bg(Hα, Hα)

= 2
Bg(Hα, Hβ)

Bg(Hα, Hα)
.

Again by the theory of irreducible finite-dimensional representations of sl(2,R)
we note that gβ+kα ̸= {0} if and only if r ≤ k ≤ s.

As β ∈ Σ we know that gβ ̸= {0} and thus r ≤ 0 ≤ s. Since −β(hα) = r + s we
thus further have r ≤ −β(hα) ≤ s and consequently gβ−β(hα)α ̸= {0}. This leaves
two possibilities:

(i) If β − β(hα)α ̸= 0, then β − β(hα) ∈ Σ.

(ii) If β−β(hα)α = 0, then β = β(hα)α. In particular β(hα) = β(hα)α(hα) = 2β(hα),
which implies β(hα) = 0 so that β − β(hα)α = β ∈ Σ.

In any case we have β−β(hα)α ∈ Σ, so assertion (2) in Theorem III.15 is proved. ■

In fact, in the course of the previous proof we have shown the following fact of
independent interest:

Lemma III.20

Let α, β ∈ Σ and assume that β /∈ Zα. Define

r := min{k ∈ Z : β + kα ∈ Σ ∪ {0}},
s := max{k ∈ Z : β + kα ∈ Σ ∪ {0}}.

Then for all k ∈ [r, s] ∩ Z we have β + kα ∈ Σ.

We can hence give the following definition
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Definition

Let α, β ∈ Σ. An α-string of β is a subset of Σ of the form

{β + kα : r ≤ k ≤ s, r, s ∈ Z}.

The α-string of β is maximal if β + (r − 1)α /∈ Σ and β + (s+ 1)α /∈ Σ.

III.4 Abstract Root Systems

Remark. Root systems are very useful due to several aspects such as

• the classification of complex semisimple Lie algebras,

• the study of the finite dimensional representations of semisimple Lie groups
and

• the study of geometric properties of Riemannian symmetric space .

Theorem III.15 introduces a structure called root system that leads to a finite
reflection group, its Weyl group. The latter is an example of a much wider class
of groups called Coxeter groups that acquired a prominent status in the theory of
buildings and in geometric group theory. In this section we will establish certain
fundamental properties of root systems and their Weyl group.

Let E be a euclidean space with scalar product ⟨·, ·⟩, and γ ∈ E\{0}. Recall that

σγ(α) := α− 2⟨α, γ⟩
⟨γ, γ⟩

γ

is the reflection on E with respect to the hyperplane γ⊥. In particular we have
σγ(γ) = −γ.

Definition: Root systems

A root system of rank dimE is a subset Σ ⊂ E\{0} such that

(1) Σ spans E,

(2) σα(Σ) = Σ for all α ∈ Σ,

(3) for all α, β ∈ Σ we have 2
⟨β, α⟩
⟨α, α⟩

∈ Z.

Example. The root spaces of a in g.
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Remark. The third condition implies that if β = λα ∈ Σ, then λ ∈ {±1
2
,±1,±2},

because these are the only values for which 2λ ∈ Z and 2
λ
∈ Z.

Definition: Reduced Root Systems

A root system is reduced if from β = λα it follows that λ = +1 or λ = −1.

Remark. Given an arbitrary root system Σ, on obtains a reduced root system by
setting

Σ′ :=
{
α ∈ Σ :

α

2
̸= Σ

}
.

Since our focus will be on the group generated by the reflections {σα : α ∈ Σ},
we may restrict ourselves to the reduced root system Σ′, because the reflections
{σα : α ∈ Σ′} generate the same group.

Example. Examples in rank 2 are

• A1 × A1:

α−α

β

−β

• A2:

α−α

β

−β

α + β

−α− β

• B2:
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α−α

β + α

−β − α

β

−β

β + 2α

−β − 2α

We want to understand the configuration of root systems. If we call φ := ∡(α, β),
then we observe that

n(β, α) := 2
⟨β, α⟩
⟨α, α⟩

= 2
∥β∥
∥α∥

cosφ.

But it follows from the third condition that

n(β, α) = 2
∥β∥
∥α∥

cosφ ∈ Z

and reversing the roles of α and β also that

n(α, β) = 2
∥α∥
∥β∥

cosφ ∈ Z.

It follows that n(α, β)n(β, α) = 4 cos2 φ ∈ Z, which implies cosφ ∈ {0,±1
2
,±

√
2
2
,±

√
3
2
}

and hence only leaves the following possibilites for non-proportional roots:

φ n(β, α) n(α, β) ∥β∥2

∥α∥2
π
2

0 0 undetermined
π
3

1 1 1
2π
3

-1 -1 1
π
4

2 1 2
3π
4

-2 -1 2
π
6

3 1 3
5π
6

-3 -1 3

Out of this table we get the following
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Lemma III.21

If α, β ∈ Σ are not proportional, then

• if ⟨α, β⟩ > 0, we have β − α ∈ Σ, and

• if ⟨α, β⟩ < 0, we have β + α ∈ Σ.

Definition: Basis of Root System

A subset ∆ ⊂ Σ is called a basis for Σ if

(1) ∆ is a basis of E,

(2) for any root α ∈ Σ all coordinates of α in the basis ∆ are integers of the
same sign.

Definition: Simple Roots

The elements of ∆ are called simple roots.

Lemma III.22

If α, β ∈ ∆ are two distinct simple roots, then ⟨α, β⟩ ≤ 0.

Proof. If ⟨α, β⟩ > 0, then β − α ∈ Σ by the previous Lemma. This contradicts
property (2) of a basis. ■

Notation. For γ ∈ E\{0} we write

Pγ = {β ∈ E : ⟨γ, β⟩ = 0}

Notice that Pγ is a hyperplane which separates E into two connected components.

Definition: Weyl Chamber and Regular Elements

• A Weyl Chamber is a connected component of E\
⋃

α∈Σ Pα.

• An element γ ∈ E is regular if ⟨α, γ⟩ ≠ 0 for all roots α ∈ Σ, that is if
γ belongs to some Weyl chamber.

Remark. This is compatible with the previous definitions.

THE FOLLOWING NEEDS TO BE CHECKED AND MAYBE PUT AT THE
END OF THE SECTION...
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Definition: Coxeter Graph

• A Coxeter Graph is a finite graph whose vertices are connected by
0, 1, 2 or 3 edges.

• A Coxeter Graph of a Root System with respect to ∆ has the
elements of ∆ as vertices and n(α, β)n(β, α) edges between α and β.

Definition: Irreducible Root Systems

Let E = E1 ⊕ E2 and Σ ⊂ E \ {0} a root system in E. If Σi := Σ ∩ Ei is
a root system on Ei for i = 1, 2, we say that Σ is reducible. If not, Σ is
irreducible.

Fact. (1) Any root system can be decomposed into a sum of irreducible root sys-
tems.

(2) Σ is irreducible if and only if its Coxeter graph is connected.

Theorem III.23

Every connected non-empty Coxeter graph of a root system is isomorphic to
one of the following:

An:

Bn:
4

Dn:

G2:

F4:
4

E6:

E7:

E8:

Idea of the Proof: Take a Coxeter graph G with vertex set Σ. Define a bilinear form
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(·, ·) on R|Σ| on the basis {eα}α∈Σ by

(eα, eβ) =


cos
(
π
2

)
α and β are connected by 0 vertices

cos
(
2π
3

)
α and β are connected by 1 vertex

cos
(
3π
4

)
α and β are connected by 2 vertices

cos
(
5π
6

)
α and β are connected by 3 vertices

If Σ is irreducible, there exists a unique (up to a constant) inner product on E. This
will lead to the classification. ■

The Coxeter graphs do not specify everything. We still need the relative length
of the roots to the following matrix.

Definition: Cartan Matrix

If Σ is a root system, the Cartan Matrix of Σ with respect to a basis ∆ is
the matrix with entries (n(β, α))α,β∈∆.

Fact. A reduced root system is defined up to isometry by its Cartan matrix.

We put weights on each vertex α proportional to the length squared ⟨α, α⟩. The
diagram obtained in this way is called theDynkin diagram of Σ. Two proportional
Dynkin diagrams describe the same Cartan matrix.

Theorem III.24

SAME DIAGRAMS AS BEFORE? Each non-empty connected Dynkin dia-
gram is isomorphic to one of the following

An:

Bn:

Dn:

G2:

F4:

E6:

E7:

E8:
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Remark. This is a classification of the simple complex Lie algebras as any simple
complex Lie algebra g determines an irreducible root system, hence a Cartan matrix
and a Dynkin diagram. Conversely, any Dynkin diagram defines a Cartan matrix
which determines an irreducible root system and therefore a simple complex Lie
algebra g.

We next wish to construct a basis ∆(γ) starting from a regular element γ such
that ∆(γ) = ∆(γ′) if γ and γ′ are in the same Weyl chamber. To do so, we first
consider

Σ+(γ) := {α ∈ Σ : ⟨α, γ⟩ > 0}
= {roots on the same half-space as γ},

Σ−(γ) := −Σ+(γ)

and notice that obviously we have

Σ = Σ+(γ) ⊔ Σ−(γ).

Definition: Indecomposable Roots

α ∈ Σ+(γ) is called indecomposable if it cannot be written as a sum of two
elements in Σ+(γ). We then define

∆(γ) := {α ∈ Σ+(γ) : α indecomposable}.

Remark. For a given basis ∆ we can write

Σ = Σ+ ⊔ Σ−

where Σ+ denotes the set of all roots with non-negative coefficients in the basis ∆,
and Σ− the set of all the roots with non-positive coefficients in the basis ∆.

Theorem III.25

If γ ∈ E is a regular element, then ∆(γ) is a basis of Σ. Moreover, every basis
of Σ is of this form.

Proof. We first show that property (2) of a basis is satisfied by showing that every
element in Σ+(γ) is a linear combination of elements in ∆(γ) with non-negative
integers as coefficients:

We write
{⟨α, γ⟩ : α ∈ Σ+(γ)} = {0 < s1 < · · · < sℓ}

and assume by contradition that there exists α ∈ Σ+(γ) such that α cannot be
written as a linear combination of elements in ∆ with non-negative integers as
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coefficients. Notice that if α were indecomposable, then α ∈ ∆(γ) by definition,
which would be a contradiction to the choice of α.

Among these counterexamples we now take one for which ⟨α, γ⟩ is minimal, say
⟨α, γ⟩ = sk, k ∈ {1, 2, . . . , ℓ}. As α is decomposable we can write α = β1 + β2 with
β1, β2 ∈ Σ+(γ), hence

sk = ⟨α, γ⟩ = ⟨β1, γ⟩︸ ︷︷ ︸
>0

+ ⟨β2, γ⟩︸ ︷︷ ︸
>0

,

which implies k ̸= 1 and ⟨βi, γ⟩ ≤ sk−1 for i = 1, 2. But as any β ∈ Σ+(γ) with
⟨β, γ⟩ ≤ sk−1 < sk can be written as a linear combination of elements in ∆ with
non-negative integers as coefficients, the same holds for α = β1 + β2, which is a
contradiction to our assumption.

We next show that ∆(γ) is linearly independent: We write

0 =
∑

α∈∆(γ)

λαα

and consider the sets

∆+ = {α ∈ ∆(γ) : λα > 0},
∆− = {β ∈ ∆(γ) : λβ < 0}.

Our goal will be to show that ∆+ = ∆− =. We observe that∑
α∈∆+

λαα = −
∑
β∈∆−

λββ =
∑
β∈∆−

|λβ|β

and thus ∥∥∥∥∥∑
α∈∆+

λαα

∥∥∥∥∥
2

= ⟨
∑
α∈∆+

λαα,
∑
β∈∆−

|λβ|β⟩

=
∑

α∈∆+,β∈∆−

λα|λβ|⟨α, β⟩.

Notice that if α, β ∈ ∆(γ) are distinct, then ⟨α, β⟩ ≤ 0. Otherwise Lemma III.21
would imply β − α ∈ Σ+(γ) or α− β ∈ Σ+(γ), hence

β = (β − α) + α ∈ Σ+ or α = (α− β) + β ∈ Σ+,

which contradicts that α and β are indecomposable. So we conclude that∥∥∥∥∥∑
α∈∆+

λαα

∥∥∥∥∥
2

=
∑

α∈∆+,β∈∆−

λα|λβ|⟨α, β⟩ ≤ 0,
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hence
∑
α∈∆+

λαα = 0, so by definition ∆+ we get ∆+ =. Similarly we obtain from

∑
β∈∆−

|λβ|β =
∑
α∈∆+

λαα = 0

and the definition of ∆− that ∆− =.
We finally consider any other basis ∆ ⊂ Σ of E. It is an easy exercise to show

that there is exists γ ∈ E such that

⟨α, γ⟩ > 0 for all α ∈ ∆.

Then clearly γ ∈ E is regular, and moreover

Σ+ ⊆ Σ+(γ) and Σ− ⊆ Σ−(γ).

From

Σ = Σ+ ∪ Σ−

= Σ+(γ) ∪ Σ−(γ)

it follows that we have Σ± = Σ±(γ). Since ∆(γ) consists of indecomposable elements
we have ∆(γ) ⊂ ∆ and thus ∆(γ) = ∆. ■

Remark. If γ, γ′ belong to the same Weyl chamber, then ∆(γ) = ∆(γ′) since

sign(⟨α, γ⟩) = sign(⟨α, γ′⟩) ∀α ∈ Σ.

It follows that there is a one-to-one correspondence between bases and Weyl cham-
bers.

Definition: Weyl Group of Root System

If α ∈ Σ and σα denotes the reflection with respect to Pα, then

W := ⟨σα : α ∈ Σ⟩ < O(E)

is called the Weyl Group of Σ.

Remark. If w ∈ W , then w(Σ) = Σ and for every w ∈ W and α ∈ Σ we have

wσαw
−1 = σw(α).

Thus W permutes the Weyl chambers and in fact, if γ is regular and C(γ) denotes
the Weyl chamber containing γ, then

w(C(γ)) = C(w(γ))
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Moreover, if ∆ is a basis, then w(∆) is also a basis for all w ∈ W . Hence W also
permutes the set of basis of Σ. Notice that if C is a Weyl chamber containing γ and
γ′, then

Σ+(γ) = Σ+(γ′) and ∆(γ) = ∆(γ′).

This gives a W -equivariant map between the set of Weyl chambers and the set of
basis of Σ.

Theorem III.26

Let ∆ be a basis of Σ. Then

(1) W = ⟨σα : α ∈ ∆⟩,

(2) W acts simply transitively on the set of bases and

(3) W acts simply transitively on the set of Weyl chambers.

Lemma III.27

Let α ∈ ∆ ⊂ Σ, where Σ is a reduced root system. Then σα permutes Σ+\{α}.

Proof. Let β ∈ Σ+\{α} and write

β =
∑
δ∈∆

cδδ with cδ ∈ Z≥0.

As Σ is reduced, β is not a multiple of α and thus cδ ̸= 0 for some δ ̸= α. But

σα(β) = β − ⟨β, α⟩
⟨α, α⟩

α

and thus the coefficient of δ in σα(β) is the same as the coefficient of δ in β. Thus
σα(β) ∈ Σ+ and since also σα(β) ̸= α we have

σα(β) ∈ Σ+\{α}. ■

Lemma III.28

If β =
∑

δ∈Σ+ δ then

σα(β) = β − 2α for all α ∈ ∆.
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Proof. Observe that β =
∑

δ∈Σ+\{α} δ + α, hence by the previous Lemma

σα(β) = σα

 ∑
δ∈Σ+\{α}

δ + α


=

∑
δ∈Σ+\{α}

δ + σα(α)︸ ︷︷ ︸
−α

= β − 2α. ■

Lemma III.29

Take α1, . . . , αn ∈ ∆ (not necessarily distinct) and write σi := σαi
, i = 1, ..., n.

Assume σ1 · · ·σn−1σn(αn) ∈ Σ+. Then there exists i ∈ {1, 2, . . . , n − 1} such
that

σ1 · · ·σn = σ1 · · · σ̂i · · ·σn−1.

Proof. Note that σn(αn) = −αn implies that σ1 · · ·σn−1(αn) ∈ Σ−. We then distin-
guish two cases:

1. If σn−1(αn) ∈ Σ−, then αn = αn−1 because σα permutes Σ+\{α} for all α ∈ ∆.
But then σn = σn−1 and hence

σ1 · · ·σn = σ1 · · ·σn−2.

2. If σn−1(αn) ∈ Σ+ then let 1 ≤ i ≤ n− 2 be the smallest index such that

σi+1 · · ·σn−1(αn) ∈ Σ+ and σiσi+1 · · ·σn−1(αn) ∈ Σ−.

Then with w := σi+1 · · ·σn−1 ∈ W we have w(αn) = αi and thus

σi = σαi
= σw(αn) = wσαnw

−1 = wσnw
−1.

So we get

σi+1 · · ·σn−1σn = wσn = σiw = σiσi+1 · · ·σn−1,

and if we multiply this on the left by σ1 · · ·σi this finally yields

σ1 · · ·σiσi+1 · · ·σn = σ1 · · · σiσi︸︷︷︸
=Id

σi+1 · · ·σn−1. ■
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From this lemma we immediately get the following

Corollary III.30

Let σ = σα1 · · ·σαn where n is the minimal number of factors in a product
decomposition of σ as a product of reflections in ∆. Then

σ(αn) ∈ Σ−.

Proof of Theorem III.26. We write W ′ = ⟨σα : α ∈ ∆⟩.

1. First we show that W ′ acts transitively on the set of Weyl chambers. We need
the following

Claim: Let γ ∈ E be regular. Then there exists σ ∈ W ′ such that

⟨σ(γ), α⟩ > 0 ∀α ∈ ∆.

Assuming the claim to be true, then transitivity follows from the fact that
σ(C(γ)) = C(σ(γ)).

Proof of Claim: Let δ =
∑

α∈Σ+ α and let σ ∈ W such that ⟨σ(γ), γ⟩ is maximal.
Then for all α ∈ ∆

⟨σ(γ), δ⟩ ≥ ⟨σα(σ(γ)), δ⟩
= ⟨σ(γ), σα(δ)⟩
= ⟨σ(γ), δ − 2α⟩
= ⟨σ(γ), δ⟩ − 2⟨σ(γ), α⟩.

Thus ⟨σ(γ), α⟩ ≥ 0 and hence ⟨σ(γ), α⟩ > 0 for all α ∈ ∆ since σ(γ) is regular as
well.

2. Now we prove that for any α ∈ Σ there exists σ ∈ W ′ such that σ(α) ∈ ∆.

Indeed, as W ′ acts transitively on the set of bases, it is enough to show that any
α ∈ Σ belongs to some basis. To do this, let γ ∈ Pα\ ∪β∈Σ\{±α} Pβ. Pick γ

′ close
to γ such that ⟨γ′, α⟩ = ε > 0 and

|⟨γ′, β⟩| > ε ∀β ∈ Σ\{±α}

Thus α is indecomposable and belongs to Σ+(γ′) and hence to Σ+(γ).

3. We next show that W ′ = W , which amounts to show that for any α ∈ Σ we have
σα ∈ W ′. If α ∈ Σ, then according to the second step there exists σ ∈ W ′ such
that σ(α) ∈ ∆ and hence

σα = σ−1σσ(α)σ ∈ σ−1W ′σ = W ′.
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4. We finally show that W acts freely on the set of basis. Let σ ∈ W = W ′, σ ̸= e
be such that σ(∆) = ∆. Write σ = σα1 · · ·σαn as a minimal product of simple
reflections α1, . . . , αn ∈ ∆ ⊂ Σ+ with n ≥ 2. Then σ(αn) ∈ Σ− which is a
contradiction to σ(∆) = ∆ ⊂ Σ+. ■

III.5 Iwasawa Decomposition

Let Σ be a root system associated to an orthogonal symmetric Lie algebra (g,Θ)
coming from a Riemannian symmetric pair (G,K). Denote gα the root spaces of
α ∈ a∗\{0} where a ⊂ p is the maximal Abelian subalgebra. Fix a Weyl chamber
a+ ⊂ a,

Σ+ = {α ∈ Σ : α(H) > 0 ∀H ∈ a+}.
Set then

n+ :=
⊕
α∈Σ+

gα.

Since [gα, gβ] ⊂ gα+β and g is finite dimensional, n+ is nilpotent and N+ := exp(n+)
is a unipotent subgroup of G.

Theorem III.31: Iwasawa Decomposition

We have
g = k⊕ a⊕ n+.

If N+ := exp(n+) and A = exp(a), then the map

K × A×N+ → G

(k, a, n) 7→ kan

is a diffeomorphism.

Sketch of the proof: Let X ∈
∑

α∈Σ− gα. Since Θ(gα) = g−α we can write

X = X +Θ(X)︸ ︷︷ ︸
∈k

−Θ(X)︸ ︷︷ ︸
∈n+

showing that ∑
α∈Σ−

⊂ k+ n+.

Moreover, since g0 ∩ p = a, we have

g0 = g0 ∩ g

= g0 ∩ p⊕ g0 ∩ k

= (g0 ∩ k)⊕ a.
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Thus we finally get

g = g0︸︷︷︸
=(g0∩k)⊕a

+
∑
α∈Σ−

gα︸ ︷︷ ︸
⊂k+n+

+
∑
α∈Σ+

gα︸ ︷︷ ︸
=n+

⊂ k⊕ a⊕ n+. ■

Remark. LetM = G/K be a Riemannian symmetric space with base point o ∈M .
Then

M = N+ · A ·K · o = N+ · A · o

is a foliation of M by the flats A · o.

Example. (SL(n,R), SO(n,R)) with

a+ = {diag(t1, . . . , tn) :
∑

tj = 0, t1 > · · · > tn}.

We saw that there are n(n− 1) roots

αij(H) = ti − tj for H ∈ a+

with corresponding root spaces gij = REij. Then

Σ+ = {αij : i < j}

and a basis is ∆ = {αi,i+1 : i = 1, . . . , n − 1}. Then n+ ⊂ sl(n,R) corresponds to
the strictly upper-triangular matrices and N+ ⊂ SL(n,R) corresponds to the upper
triangular matrices with ones on the diagonal. Finally

A =
{
diag(λ1, . . . , λn) :

∏
λi = 1

}
.

so that
SL(n,R) = SO(n) · A ·N+

which is essentially Gram-Schmidt.
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Appendix A

Lie Groups

Definition: Lie Group

A Lie group is a smooth manifold that is also a group and such that the group
operations are smooth. The dimension of a Lie group is the dimension of the
underlying manifold.

Example. (1) (Rn,+);

(2) The general linear group

GL(n,R) := {g ∈ Rn : det g ̸= 0} .

It is disconnected, and the two connected components are characterized by the
sign of the determinant. In particular GL(1,R) = (R∗, ·).

(3) The special linear group

SL(n,R := {g ∈ GL(n,R) : det g = 1}

is connected and not compact since it contains the matrix gs :=

s 0 0
0 1

s
0

0 0 In−2

.

(4) Let Bp Rn × Rn → R be the symmetric bilinear form of signature (p, q), where
q = n− p and let Qp be the associated quadratic form. Let

O(p, q) := {g ∈ GL(n,R) : Qp(gv) = Qp(v) for all v ∈ Rn} .

We claim that O(p, q) is compact if and only if p = 0. We illustrate the argument
in the case in which p = 1 and the general case will be clear. If (e1, . . . , en) is
the standard basis of Rn, let us consider the new basis (e′1, e

′
2, e3, . . . , en), where

125



126 APPENDIX A. LIE GROUPS

e′1 = e2− e1 and e′2 = e2+ e1. With respect to this new basis the quadratic form
Qp becomes Q′

p(v) = −v21 +
∑n

j=2 v
2
j . It is clear that the matrix gs in (3) is in

O(1, n− 1) which is hence not compact.

If on the other hand p = 0, the bilinear form B0 is nothing but the usual inner
product in Rn and the group O(0, n) is called the (real) orthogonal group and
is usually denoted by O(n,R). If g ∈ O(n,R), we can write g = ((c1) . . . (cn)),
where for i ≤ j ≤ n the cj are n × 1 column vector such that cj = gej. Then
(c1, . . . , cn) is an orthonormal basis in Rn, so that ∥cj∥ = 1 for all 1 ≤ j ≤ n.
Thus |gij| ≤ 1 for all 1 ≤ i, j ≤ n and hence O(n,R) is compact.

(5) The unitary group

U(n) := {g ∈ GL(n,C) : g∗g = I},

where g∗ = tg, is compact while the complex orthogonal group

O(n,C) := {g ∈ GL(n,C) : tg g = I}

is not.

(6) If B : C2n × C2n → C is the standard non-degenerate skew-symmetric bilinear
form on C2n

B(x, y) :=
∑

1≤p≤n

(xpyn+p + xn+pyp)

the symplectic group is

Sp(2n,C) :={g ∈ SL(2n,C) : B(x, y) = B(gx, gy) for all x, y ∈ C2n}
={g ∈ SL(2n,C) : tg F g = F} ,

where F =

(
0 In

−In 0

)
.

(7) The product and the semidirect product of Lie groups is a Lie group.

(8) The n-dimensional torus Tn is an Abelian Lie group, where

T := {z ∈ C : |z| = 1} ,

and can be identified with

SO(2,R) := (O)(2,R) ∩ SL(2,R) = {g =
(

cos θ sin θ
− sin θ cos θ

)
}

via the isomorphism eıθ 7→
(

cos θ sin θ
− sin θ cos θ

)
.
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(9) All countable discrete groups are (zero-dimensional) Lie groups.

(10) Every subgroup of a Lie group is a Lie group.

(11) Every Lie group is locally isomorphic to a linear Lie group, that is to a subgroup
of GL(n,R).

(12) The universal covering ˜SL(n,R) of SL(n,R) is a Lie group but not linear, that
is there are no faithful representations into GL(n,R). In fact, as manifolds,
SL(n,R) is diffeomorphic to SO(n,R)× Ek for some k ∈ N. Then

π1(SL(n,R) = π1(SO(n,R) =

{
Z2 n ≥ 3

Z n = 2 .

Thus ˜SL(n,R) is the two-sheeted cover of SL(n,R) if n ≥ 3 and is the infinite-
sheeted cover of SL(2,R) if n = 2.

Definition: Lie Algebra

A Lie algebra g is a finite dimensional vector space endowed with a bilinear
antisymmetric operation [ , ] : g × g → g, called the bracket, that for all
X, Y, Z ∈ g satisfies the Jacobi identity

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]] .

We say that g is Abelian if [X, Y ] = 0 for all X, Y ∈ g.

Example. (1) Any associative algebra is a Lie algebra with the bracket

[a, b] = ab− ba .

(2) The space of n × n matrices is a Lie algebra with the bracket induced by the
matrix multiplication.

(3) The vector space Vect(M) of smooth vector fields on a manifold M is a Lie
algebra in which the operation is the bracket of vector fields.

(4) The vector space R3 is a Lie algebra with the cross product.

Let G be a Lie group and let Lg be the left translation on G. We say that a
vector field X ∈ Vect(G) is left invariant if (Lg)∗X = X. It is easy to see that the
space Vect(G)G of left invariant vector fields is closed under the bracket operation
and is hence a Lie subalgebra of Vect(G) thus a Lie algebra as well. It is easy to
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see, via the evaluation map, that Vect(G)G can be identified with the tangent space
to G at the identity and is hence finite dimensional.

Definition: Lie Algebra of a Lie group

The Lie algebra of a Lie group G is the vector space Vect(G)G of left invariant
vector fields on the group. The Lie algebra of a Lie group G is denoted by g
or Lie(G).

Definition: Lie group and Lie agebra homomorphisms

(1) A Lie group homomorphism is a group homomorphism that is smooth.

(2) A Lie algebra homomorphism is a linear map φ : g → h such that
φ([X, Y ]) = [φ(X), φ(Y )] for all X, Y ∈ g.

Recall that any measurable homomorphism of a locally compact topological
group is continuous and, if the group is actually a Lie group, it is smooth.

In the case of a linear Lie group the identification with the tangent space at the
identity has also the very nice consequence that the bracket of vector fields can be
computed as the bracket of matrices in the following sense:

Proposition A.1:

The Lie algebra Lie(GL(n,R) = gl(n,R) is isomorphic as Lie algebra to Rn×n

with the usual bracket of matrices.

The following result gives the relationship between Lie group homomorphisms
and Lie algebra homomorphisms. Recall that if G,H are topological groups, a local
homomorphism is a map φ : U → H, where U ⊂ G is an open neightborhood of
e ∈ G, such that φ(xy) = φ(x)φ(y) for all x, y ∈ U such that xy ∈ U .
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Proposition A.2:

(1) If φ : G → H is a Lie group homomorphism, then deφ : g → h is a Lie
algebra homomorphism.

(2) If G,H are Lie groups with Lie algebras g, h, and π : g → h is a Lie algebra
homomorphism, then there exists a local homomorphism φ : B → H such
that deφ = π.

(3) If the homomorphism in (2) is an isomorphism, the local homomorphism
is a local isomorphism.

(4) If two simply connected Lie groups have isomorphism Lie algebras, then
they are isomorphic.

The hypothesis that the Lie groups in (4) are simply connected is essential as
the following example shows:

Example. Let φ : R → S1 bt eh homomorphism t 7→ eıt. Then d0φ : Lie(R) →
Lie(S1) is a Lie algebra isomorphism and so is also (d0φ)

−1 : Lie(S1) → Lie(R). If
(d0φ)

−1 were the differential of a homomorphism ψ : S1 → R, ψ(S1) would be a one-
dimensional compact subgroup of R. But this is impossible since the only compact
subgroup of R is trivial. Hence (d0φ)

−1 is the differential of a local isomorphism.

Definition: One-parameter Subgroup

A one-parameter subgroup of a Lie groups is a Lie group homomorphism
φ : R → G, that is a smooth curve that is also a homomorphism.

The hypothesis of simple connectivity plays in our favor in this case. In fact,
given a Lie group G and X ∈ g we can define a Lie algebra homomorphism Lie(R) →
g defined as t 7→ tX. By Proposition ?? there exists a local homomorphism that,
since R is simply connected, extends to a global homomorphism. We denote by φX

the one-parameter subgroup such that

φX(0) = e and φ̇X(0) = X .

The link between lines in the Lie algebra and one-paramenter subgroups in the
Lie group is given by the exponential map.
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Definition: Exponential Map

The exponential map of the Lie algebra g (or equivalently, of the Lie group G)
is defined as

expg : g −→ G

X 7→φX(1) .

When there is no risk of confusion we might drop the subscript g.

Example. (1) If G = S1, then exp: Lie(S1) → S1 is, the usual exponential map
exp(t) = eıt.

(2) In the case of the general linear group, the exponential map is, once again, just
the usual exponential of a matrix

exp(X) = eX =
∞∑
j=0

Xj

j!
.

Proposition A.3: Properties of the exponential map

Let G be a Lie group with Lie algebra g and let X ∈ g.

1. exp(t1 + t2)X = exp(t1X) exp(t2X) for all t1, t2 ∈ R.

2. exp(tX)−1 = exp(−tX) for all t ∈ R.

3. exp : g → G is a smooth map, and a local diffeomorphism from a
neighborhood of 0 ∈ g onto a neighborhood of e ∈ G. In fact, d0 exp =
Id .

If h : G→ G is any homomorphism, then, chasing the definitions, one can check
the naturality of the Lie group exponential map. In other words, the following
diagram commutes

g
deh //

exp

��

g

exp

��
G

h
// G ,

that is, for all g ∈ G and X ∈ g,

exp(dehX) = h(expX) . (A.1)
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A particularly important homomorphism is the conjugation cg : G→ G, defined
by cg(h) := ghg−1. This is a Lie group isomorphism whose differential

AdG(g) := decg : g → g

at the identity e ∈ G is a Lie algebra automorphism, that is

AdG(g)([X, Y ]) = [AdG(g)(X),AdG(g)(Y )]

for all X, Y ∈ g and g ∈ G. In particular (A.1) applied to h = cg yields

exp(AdG(g)X) = g expXg−1 . (A.2)

The map

AdG : G→ GL(g)

is a group homomorphism called the Adjoint representation of G. Taking this one
step further, its derivative at the identity

adg := deAdG : g → gl(g)

is the adjoint representation of g. This is a Lie algebra homomorphism, that is

adg([X, Y ]) = [adg(X), adg(Y )]

for all X, Y ∈ g.
Neither AdG nor adg are necessarily faithful. Their respective kernels are the

center Z(G) of G and the center z(g), which satisfy the relation Lie(Z(G) = z(g).
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Appendix B

Preliminaries

B.1 Topological Preliminaries

Definition

Let X by a a topological space and (Y, d) a metric space. A family F ⊂
C(X, Y ) of functions if equicontinuous is for every x ∈X and every ϵ > 0,
there exists an open Ux ⊂ X such that for all f ∈ F and all x′ ∈ Ux,
d(f(x), f(x′)) < ϵ.

Theorem B.1: Ascoli–Arzelà

Let X be a topological space and (Y, d) a metric space. Give C(X, Y ) the
compact-open topology and let F ⊂ C(X, Y ). Then:

(1) F is equicontinuous and the set Fa = {f(a) : f ∈ F} has compact closure
for all a ∈ X then F is relatively compact.

(2) The converse holds is X is locally compact and Hausdorff.
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Definition

A (topological) fiber bundle B consists of

(1) a topological space B (bundle space),

(2) a topological space X (base space),

(3) a continuous map P : B ↠ X (projection),

(4) a topological space Y (fiber) such that for every x ∈ X the fiber p−1(x)
must be homeomorphic to Y .

Moreover a fiber bundle is locally trivial, that is

(5) for every x ∈ X, there exists a neighborhood V of x and a homeomorphism

φ : V × Y × p−1(V )

such that the diagram

p−1(V )

p

��

V × Y
φoo

pr1
yy

V

commutes, that is pφ(x′, y) = x′ for all x′ ∈ V and y ∈ Y .

Finally a cross-section of B is a a continuous map σ : X → B that is a right
inverse to p, that is such that p ◦ σ(x) = x for all x ∈ X.

We consider now the case in which B is a group, so that X ia a G-homogeneous
space X = G/H and Y = H = StabG(p). This is what is called a principal
bundle. In this case having a local cross-section implies (5). In fact we can define
φ : V ×H → p−1(V ) as

φ(x, h) := σ(x)h

and it is easy to verify that p◦φ(x, h) = x. For the inverse φ−1 we have the formula

φ−1(p−1(x)) = (x, x−1σ(p(x))) ,

where we need to verify that x−1σ(p(x)) ∈ H. In fact, by definition of σ,

p(x−1σ(p(x))) = p(x−1)p(σ(p(x))) = p(x−1)p(x) = p(x−1x) = p(e) ∈ H .
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B.2 Differential Geometrical Preliminaries (added

as we move along, no logical order...)

Lemma B.2:

Let M be a Riemannian manifold and p0 ∈ M . Then there exists a ball
Br(p0) that is a normal neighborhood of each of its points, with the following
property. Let p, q ∈ Br(p0) and let γ : [0, 1] → M the unique geodesic in
Br(p0) joining p = γ(0) and q = γ(1) and let L(γ) be its length. Then:

(1) For any (p′, v) near (p, γ̇(0)) with v ∈ Tp′M , ∥v∥ = 1, there exists a
geodesic γ′ in Br(p0) of the same length as L(γ) starting at p′ and with v
as tangent vector in p′.

(2) The data (p′, v) (and hence the geodesic γ′) depends smoothly on (p, γ̇(0)).

B.2.1 Completeness

Theorem B.3: Hopf–Rinow

Let (M, g) be a Riemannian manifold. The following assertions are equivalent:

(1) M is geodesically compete, that is, all geodesics are defined over R or,
equivalently, Expp is defined on TpM for all p ∈M ;

(2) There exists p ∈M such that Expp is defined on TpM ;

(3) (M,d) is complete as a metric space.

(4) The closed bounded subsets of M are compact.

Moreover, each of these assertions implies the existence of a minimizing
geodesic between any two given points.
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B.2.2 Connections

Definition

A C∞ or affine connection ∇ on a differentiable manifold (M, g) is a map
∇ : Vect(M) × Vect(M) → Vect(M), (X, Y ) → ∇XY with the properties
that for every f, f ′ ∈ C∞(M) and every X,X ′, Y, Y ′ ∈ Vect(M),

(1) ∇fX+f ′X′Y = f(∇XY ) + f ′(∇X′Y );

(2) ∇X(fY + f ′Y ′) = f∇XY + f ′∇XY
′ + (Xf)Y + (Xf ′)Y ′.

Remark. (1) A C∞ connection ∇ is R-linear in both variables, but it is C∞(M)-
linear only in the first variable and not in the second one.

(2) Another difference between the role that the two variables X, Y play, is reflected
in the fact that the value at the point p ∈ M of the vector field ∇XY depends
only on the value Xp of the vector field X at p, but not on the vector field X.
(The same is not true of the dependence on Y .)

A connection allows to differentiate vector fields defined along curves. If γ : R →
M is a smooth curve, we call ∇γ̇X the covariant derivative of X along γ.

Definition

We say that a vector field X along a curve γ is parallel if ∇γ̇X = 0.

While “constant” vector fields, that is vector fields Y ∈ Vect(M) such that at
every point p ∈M (∇XY )p = 0 for every X ∈ Vect(M) rarely exists, it follows from
the existence and uniqueness of the solutions of differential equations always exist:

Proposition B.4

Let M be a differentiable manifold. Given a curve γ and a vector v ∈ Tγ(0)M ,
there exists a unique vector field Xv parallel along γ such that Xγ(0) = v.

The parallel transport along γ from γ(0) to γ(t) is defined as the linear isomor-
phism Tγ(0)M → Tγ(t)M given by v 7→ (Xv)γ(t). This gives an identification of
the tangent spaces at γ(0) and at γ(t). Geodesics in a differentiable manifolds are
defined as differentiable curves γ : I →M such that ∇γ̇(t)γ̇(t) = 0 for all t ∈ I ⊂ R.

One could add more conditions to the ones definining an affine connection. An
affine connection satisfying also condition (3) below is called a symmetric connection.
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Definition

An affine connection that in addition satisfies

(3) it is symmetric, namely [X, Y ] = ∇XY −∇YX, and

(4) Xg(Y, Y ′) = g(∇X , Y, Y
′) + g(Y,∇XY

′)

is called Riemannian connection.

Theorem B.5: Fundamental Theorem in Riemannian Geometry

Given a Riemannian manifold (M, g), there exists a unique Riemannian con-
nection, called the Levi-Civita connection.

The following lemma is not at all surprising:

Lemma B.6:

Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇. Let
γ : R → M be a smooth curve, Y a parallel vector field along γ and f ∈
Iso(M). Then f∗Y is a parallel vector field along f ◦ γ.

Proof. Let us consider the map Vect(M)×Vect(M) → Vect(M) defined by (X, Y ) 7→
f−1
∗ (∇f∗Xf∗Y ) =: DXY . If we show that DXY satisfies (1) through (4) of Defini-
tion ??, then by Theorem ??, ∇XY = f−1

∗ (∇f∗Xf∗Y ), so that f∗(∇XY ) = ∇f∗Xf∗Y .
If X = γ̇, then f∗(∇γ̇Y ) = ∇f∗γ̇f∗Y = ∇(f◦γ)̇f∗Y , so that∇(f◦γ)̇f∗Y = 0 if∇γ̇Y = 0.

Properties (1) and (2) are obvious. To see (3), recall that [f∗X, f∗Y ] = f∗[X, Y ],
so that

∇f∗Xf∗Y −∇f∗Y f∗X = [f∗X, f∗Y ] = f∗[X, Y ] = f∗(∇XY −∇YX) .

It follows that

[X, Y ] = ∇XY −∇YX = DXY −DYX ,

so that (3) is verified. Then (4) follows from the following chain of equalities:

g(DXY, Y
′ ) + g(Y,DXY

′)

=g(f−1
∗ (∇f∗Xf∗Y ), Y ′ ) + g(Y, f−1

∗ (∇f∗Xf∗Y
′)

=g(∇f∗Xf∗Y, f∗Y
′ ) + g(f∗Y,∇f∗Xf∗Y

′)

=(f∗X)g(f∗Y, f∗Y
′ )

=f∗X)f∗(g(Y, Y
′ ))

=Xg(Y, Y ′ ) .

■
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In fact, this is only a particular case of the fact that if f : M → M is a diffeo-
morphism and ∇ : Vect(M) × Vect(M) → Vect(M) is an affine connection, then
D : Vect(M) × Vect(M) → Vect(M) defined by DXY := f−1

∗ (∇f∗Xf∗Y ) is also an
affine connection. In particular, ifM is a Lie group and f := Lg is the left translation
via g ∈ G, then a connection that satisfies

∇XY := (Lg)
−1
∗ (∇(Lg)∗X(Lg)∗Y ) (B.1)

is called left invariant.

Here is a result about the differential of the exponential map associated to an
affine connection. Recall that an affine connection is analytic if the map p 7→ (∇XY )p
is analytic for any two analytic vector fields X, Y ∈ Vect(M).

If X ∈ TpM , for p ∈ M , we denote by X∗ the vector field defined on a normal
neighborhood around p ∈M , obtained by parallel translation of X along a geodesic
joining two points.

Recall that there exist neighborhoods Nq(M) of q ∈ M and VqM of 0 ∈ TqM
such that Expq : Vq → NqM is a diffeomorphism. The differential at X ∈ VqM
will hence be: dX(Exp∇)q : TX(VqM) → T(Exp∇)q(X)Nq(M) or else, by identifying
TX(VqM) with TqM ,

dX(Exp∇)q : TqM → T(Exp∇)q(X)(M) .

An analogous relation holds for tX, provided that t is small enough that tX ∈ VqM .
If X ∈ TqM , for q ∈ M , we denote by X∗ the vector field defined on a normal

neighborhood around q ∈M , obtained by parallel translation of X along a geodesic
joining two points.

//

Theorem B.7: Helgason

Theorem I.6.5, Helgason Let M be an analytic manifold with an analytic
connection. Let q ∈ M and X ∈ TqM . Then there exists ϵ > 0 such that for
Y ∈ TqM ,

(dtX(Exp∇))(Y ) =

(
∞∑
n=0

θ(−tX∗)n

(n+ 1)!
(Y ∗)

)
(Exp∇)(tX)

for |t| < ϵ, where θ(X) := [X, Y ].

B.2.3 Curvature

We know that if X, Y are vector fields, [X, Y ] measures the extent to which X and
Y do not commute. We can also define a quantity that measures the extent to which
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∇XY and ∇YX do not commute, by adding also a term that depends on [X, Y ] and
“makes things better”.

Definition

Let M be a manifold with an affine connection. The curvature of M is
a multilinear mapping (when Vect(M) is considered as a C∞(M)-module)
R : Vect(M)× Vect(M)× Vect(M) → Vect(M) defined by

R(X, Y )Z := ∇X(∇YZ)−∇Y (∇XZ)−∇[X,Y ](Z) .

To every X, Y ∈ Vect(M), it associates the curvature operator

R(X, Y ) : Vect(M) → Vect(M)

It follows from the presence of the term ∇[X,Y ] that at each point p ∈ M the
vector (R(X, Y )Z)p depends only on Xp, Yp, Zp and not on their values in a neigh-
borhood of p. Thus R defines a linear transformation R(Xp, Yp) : TpM → TpM and
in fact R : TpM × TpM → Lin(TpM) is a map that to two vectors at the point p,
associates a linear operator from TpM into itself.

If M is a Riemannian manifold, then the Riemannian metric allows us to see the
curvature as a (4,0)-tensor, by setting R(X, Y, Z, T ) = g(R(X, Y )Z, T ).

The Riemann curvature tensor has the following symmetries:

(R1) R(X, Y, Z, T ) = −R(Y,X,Z, T ) = R(Z, T,X, Y );

(R2) R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0 (First Bianchi Identity)

It is not difficult to see that the curvature tensor and the curvature operator
completely determine each other.

Given a Riemannian manifold, there are other notions of curvature. The sec-
tional curvature K(P ) of a 2-plane P in TpM is defined as follows. If {u, v} is an
orthonormal basis of P (orthonormal with respect to the Riemannian metric g) then

K(P ) := −R(u, v, u, v) . (B.2)

The sectional curvature coincides with the usual notion of Gaussian curvature on
a surface. Namely, if P is a tangent 2-plane in TpM and Σ is a portion of surface
in M tangent to P at p, then the sectional curvature of P is exactly the Gaussian
curvature of Σ at p.

Moreover the symmetry properties of the Riemann curvature tensor imply that
it can be completely determined by knowing the sectional curvature on all sections
of TpM .
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B.2.4 Totally Geodesic Submanifolds

Definition

Let M be a Riemannian manifold and N ⊂M a connected submanifold. Let
p ∈ N The submanifold N is geodesic at p if given any tangent vector v ∈ TpN ,
the M -geodesic γv : − (ϵ, ϵ) →M with γ(0) = p and γ̇(0) = v is contained in
N .
The submanifold N is totally geodesic if it is geodesic at every point p ∈ N .

It is not difficult to show that then the M -geodesic γ ⊂ N is also an N -geodesic
and that any N -geodesic is also anM -geodesic. As a consequence, ifM is complete,
then N is complete.

Totally geodesic submanifolds in Riemannian manifolds are not frequent. If
M = Rn, then linear subspaces and their translates are totally geodesic. If M =
Sn ⊂ Rn+1, then the intersection of Sn with linear subspaces are totally geodesic. It
was proven by Cartan, that if a Riemannian manifold M has the property that for
every p ∈ M and for every two-dimensional plane P ⊂ TpM , there exists a totally
geodesic submanifold tangent to P , then M has constant curvature.

Theorem B.8:

Let M be a Riemannian manifold and N a connected complete submanifold.
Then N is totally geodesic if and only if theM -parallel transport along curves
in N sends tangent vectors to N to tangent vectors to N .

One direction of the above theorem is obvious if we replace ”curve” with ”geodesic”.
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225, Ouvres Complètes I2, 841–866.
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